Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/54980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaewmaraya, Ten
dc.contributor.authorThatsami, Nen
dc.contributor.authorTangpakonsab, Pen
dc.contributor.authorKinkla, Ren
dc.contributor.authorKotmool, Ken
dc.contributor.authorMenendez, Cen
dc.contributor.authorAguey-Zinsou, K-Fen
dc.contributor.authorHussain, Ten
dc.date.accessioned2023-06-18T22:32:28Z-
dc.date.available2023-06-18T22:32:28Z-
dc.date.issued2023-08-30-
dc.identifier.citationApplied Surface Science, v.629, p. 1-9en
dc.identifier.issn1873-5584en
dc.identifier.issn0169-4332en
dc.identifier.urihttps://hdl.handle.net/1959.11/54980-
dc.description.abstract<p>Hydrogen (H<sub>2</sub>) energy has emerged as a principal contender for renewable green energy applications because of the ultra-high energy density and natural abundance. The implementation of this prospective technology necessitates the ultra-high capacity of H<sub>2</sub> storage mediums. This work reports the exceptional H<sub>2</sub> storage capacities of two-dimensional (2D) carbon allotrope biphenylene (BPL) functionalized by Li, Na, K, and Ca. The combined theoretical approaches including the density functional theory (DFT), <i>ab-initio</i> molecular dynamics (AIMD), maximally localized Wannier functions (MLWFs), and thermodynamic analysis were employed to elucidate the storage efficiencies at operationally practical conditions. The findings reveal that pristine BPL decorated by the selected metals are all inefficient for H<sub>2</sub> storage because of the sensitive crystal instability caused by the energetic aggregation of the metallic dopants. On the other hand, point-defected BPL resolves this issue because it adequately magnifies the binding energies with all the decorated metals <i>via</i> the highly ionic bonds. Crucially, these binding energies exceed the cohesive counterparts of the parental metal bulks, consequently stabilizing the crystal integrity. Intriguingly, the Li- and Na-decorated divacancy BPL retain the ultimate H<sub>2</sub> storage capacities of 6.76 wt% and 6.66 wt% at the practical temperature and pressure, respectively, surpassing the goal value of 5.50 wt% to be achieved by 2025. Hence, metal-functionalized BPL are conclusively the promising carbon materials for the H<sub>2</sub> storage functionality.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofApplied Surface Scienceen
dc.titleUltrahigh hydrogen storage using metal-decorated defected biphenyleneen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.apsusc.2023.157391en
local.contributor.firstnameTen
local.contributor.firstnameNen
local.contributor.firstnamePen
local.contributor.firstnameRen
local.contributor.firstnameKen
local.contributor.firstnameCen
local.contributor.firstnameK-Fen
local.contributor.firstnameTen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber157391en
local.format.startpage1en
local.format.endpage9en
local.peerreviewedYesen
local.identifier.volume629en
local.contributor.lastnameKaewmarayaen
local.contributor.lastnameThatsamien
local.contributor.lastnameTangpakonsaben
local.contributor.lastnameKinklaen
local.contributor.lastnameKotmoolen
local.contributor.lastnameMenendezen
local.contributor.lastnameAguey-Zinsouen
local.contributor.lastnameHussainen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/54980en
local.date.onlineversion2023-05-03-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUltrahigh hydrogen storage using metal-decorated defected biphenyleneen
local.relation.fundingsourcenoteThis research was supported by the Fundamental Fund of Khon Kaen University. The research has received funding support from the National Science, Research, and Innovation Fund (NSRF). The high-performance computing facility was provided by ThaiSC. This work was supported by the NCI Adapter Scheme, with computational resources provided by NCI Australia, an NCRIS-enabled capability supported by the Australian Government.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKaewmaraya, Ten
local.search.authorThatsami, Nen
local.search.authorTangpakonsab, Pen
local.search.authorKinkla, Ren
local.search.authorKotmool, Ken
local.search.authorMenendez, Cen
local.search.authorAguey-Zinsou, K-Fen
local.search.authorHussain, Ten
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ec2b1b75-eecf-4295-8e74-56845c6227aeen
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.seo2020170304 Energy storage (excl. hydrogen and batteries)en
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.