Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/52134
Title: | Influence of feeding Saccharomyces cerevisiae on the heat load responses of lactating dairy cows during summer |
Contributor(s): | Lees, A M (author) ; Olm, J C W (author); Lees, J C (author) ; Gaughan, J B (author) |
Publication Date: | 2022-02 |
Early Online Version: | 2021-07-15 |
Open Access: | Yes |
DOI: | 10.1007/s00484-021-02169-y |
Handle Link: | https://hdl.handle.net/1959.11/52134 |
Abstract: | | The objective of this study was to evaluate the influence of supplementing lactating dairy cows with Saccharomyces cerevisiae on milk production and composition, cow behavior, and physiological responses during summer. Twenty primiparous cows were used and two treatments were imposed: (1) control (CON); and (2) probiotic supplementation (PRO; S. cerevisiae, providing 1010 colony forming units (CFU) per day). Rumen temperature (TRUM, °C) and pH were obtained via rumen boluses. Rumen temperatures were obtained from all cows (n = 20) at 10-min intervals and ruminal pH were obtained from five cow pairs (n = 10) at 10-min intervals. Ambient temperature (TA; °C), relative humidity (RH; %), wind speed (WS; m/s), and solar radiation (SR; W/m2) were recorded at 10-min intervals. The temperature humidity index (THI) was calculated using TA and RH. Cows were milked twice daily. Milk fat (%), protein (%), lactose (%), and somatic cell count (SCC, ‘000) were evaluated on 16 occasions. Cows were observed three times (0800 h; 1200 h; and 1400 h) daily for panting score (PS); respiration rate (RR); posture (standing/lying); shade utilization; and cow activity (eating/drinking/ruminating). Individual PS were used to calculate a mean panting score (MPS) for CON and PRO treatments for each observation. S. cerevisiae did not influence milk yield (P = 0.87), fat (P = 0.82), protein (P = 0.26) or SCC (P = 0.19), although there was a tendency for PRO cows to have higher lactose (P = 0.06). Probiotics did not influence the proportion of cows utilizing shade (P = 0.42); standing (P = 0.41); ruminating (P = 0.72); or drinking (P = 0.40). All cows exhibited an increase in RR (> 24 bpm) at 1200 h and RR showed a steady increase as THI increased (P < 0.0001), regardless of treatment (P = 0.96). Both CON (35.8%) and PRO (40.2%) exhibited an increase in MPS as THI increased from thermoneutral (THI ≤ 74) to very hot (THI ≥ 84.1; P < 0.001). However, PRO cows had lower (2.19 ± 0.09; P < 0.0001) MPS compared with CON (2.54 ± 0.22) cows when THI was categorized as very hot (THI ≥ 84.1). Rumen pH were not influenced by treatment (P = 0.38), however TRUM of PRO cows were 0.2 °C lower across days (P < 0.0001) and hours (P < 0.0001). These results suggest that supplementing cows with S. cerevisiae may support thermoregulation via decreased TRUM and MPS; however, further studies are required.
Publication Type: | Journal Article |
Source of Publication: | International Journal of Biometeorology, 66(2), p. 275-288 |
Publisher: | Springer |
Place of Publication: | Germany |
ISSN: | 1432-1254 0020-7128 |
Fields of Research (FoR) 2020: | 300302 Animal management 300307 Environmental studies in animal production |
Socio-Economic Objective (SEO) 2020: | 100402 Dairy cattle 100199 Environmentally sustainable animal production not elsewhere classified |
Peer Reviewed: | Yes |
HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
Appears in Collections: | Journal Article School of Environmental and Rural Science
|
Files in This Item:
1 files
Show full item record
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.