Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Guo-Boen
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorMontgomery, Grant Wen
dc.contributor.authorWray, Naomi Ren
dc.contributor.authorVisscher, Peter Men
dc.contributor.authorGearry, Richard Ben
dc.contributor.authorLawrance, Ian Cen
dc.contributor.authorAndrews, Jane Men
dc.contributor.authorBampton, Peteren
dc.contributor.authorMahy, Gillianen
dc.contributor.authorBell, Sallyen
dc.contributor.authorWalsh, Alissaen
dc.contributor.authorConnor, Susanen
dc.contributor.authorSparrow, Milesen
dc.contributor.authorBowdler, Lisa Men
dc.contributor.authorSimms, Lisa Aen
dc.contributor.authorKrishnaprasad, Krupaen
dc.contributor.authorRadford-Smith, Graham Len
dc.contributor.authorMoser, Gerharden
dc.date.accessioned2022-04-27T05:44:11Z-
dc.date.available2022-04-27T05:44:11Z-
dc.date.issued2017-08-29-
dc.identifier.citationBMC Medical Genetics, v.18, p. 1-11en
dc.identifier.issn1471-2350en
dc.identifier.urihttps://hdl.handle.net/1959.11/51760-
dc.description.abstract<p> <b> Background: </b> Predicting risk of disease from genotypes is being increasingly proposed for a variety of diagnostic and prognostic purposes. Genome-wide association studies (GWAS) have identified a large number of genome-wide significant susceptibility loci for Crohn’s disease (CD) and ulcerative colitis (UC), two subtypes of inflammatory bowel disease (IBD). Recent studies have demonstrated that including only loci that are significantly associated with disease in the prediction model has low predictive power and that power can substantially be improved using a polygenic approach. </p><br/> <p> <b> Methods: </b> We performed a comprehensive analysis of risk prediction models using large case-control cohorts genotyped for 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip using four prediction methods (polygenic score, best linear genomic prediction, elastic-net regularization and a Bayesian mixture model). We used the area under the curve (AUC) to assess prediction performance for discovery populations with different sample sizes and number of SNPs within cross-validation. </p> <br/> <p> <b> Results: </b> On average, the Bayesian mixture approach had the best prediction performance. Using cross-validation we found little differences in prediction performance between GWAS and Immunochip, despite the GWAS array providing a 10 times larger effective genome-wide coverage. The prediction performance using Immunochip is largely due to the power of the initial GWAS for its marker selection and its low cost that enabled larger sample sizes. The predictive ability of the genomic risk score based on Immunochip was replicated in external data, with AUC of 0.75 for CD and 0.70 for UC. CD patients with higher risk scores demonstrated clinical characteristics typically associated with a more severe disease course including ileal location and earlier age at diagnosis. </p> <br/> <p> <b> Conclusions: </b> Our analyses demonstrate that the power of genomic risk prediction for IBD is mainly due to strongly associated SNPs with considerable effect sizes. Additional SNPs that are only tagged by high-density GWAS arrays and low or rare-variants over-represented in the high-density region on the Immunochip contribute little to prediction accuracy. Although a quantitative assessment of IBD risk for an individual is not currently possible, we show sufficient power of genomic risk scores to stratify IBD risk among individuals at diagnosis. </p>en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofBMC Medical Geneticsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titlePerformance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score methoden
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12881-017-0451-2en
dc.identifier.pmid28851283en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsComplex traiten
dc.subject.keywordsCase-control studyen
dc.subject.keywordsRisk scoreen
dc.subject.keywordsSNP arrayen
dc.subject.keywordsGenetics & Heredityen
dc.subject.keywordsInflammatory bowel diseaseen
dc.subject.keywordsCrohn's diseaseen
dc.subject.keywordsUlcerative colitisen
local.contributor.firstnameGuo-Boen
local.contributor.firstnameSang Hongen
local.contributor.firstnameGrant Wen
local.contributor.firstnameNaomi Ren
local.contributor.firstnamePeter Men
local.contributor.firstnameRichard Ben
local.contributor.firstnameIan Cen
local.contributor.firstnameJane Men
local.contributor.firstnamePeteren
local.contributor.firstnameGillianen
local.contributor.firstnameSallyen
local.contributor.firstnameAlissaen
local.contributor.firstnameSusanen
local.contributor.firstnameMilesen
local.contributor.firstnameLisa Men
local.contributor.firstnameLisa Aen
local.contributor.firstnameKrupaen
local.contributor.firstnameGraham Len
local.contributor.firstnameGerharden
local.relation.isfundedbyARCen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.grant.numberDP160102126en
local.grant.numberFT160100229en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber94en
local.format.startpage1en
local.format.endpage11en
local.peerreviewedYesen
local.identifier.volume18en
local.access.fulltextYesen
local.contributor.lastnameChenen
local.contributor.lastnameLeeen
local.contributor.lastnameMontgomeryen
local.contributor.lastnameWrayen
local.contributor.lastnameVisscheren
local.contributor.lastnameGearryen
local.contributor.lastnameLawranceen
local.contributor.lastnameAndrewsen
local.contributor.lastnameBamptonen
local.contributor.lastnameMahyen
local.contributor.lastnameBellen
local.contributor.lastnameWalshen
local.contributor.lastnameConnoren
local.contributor.lastnameSparrowen
local.contributor.lastnameBowdleren
local.contributor.lastnameSimmsen
local.contributor.lastnameKrishnaprasaden
local.contributor.lastnameRadford-Smithen
local.contributor.lastnameMoseren
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51760en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePerformance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score methoden
local.relation.fundingsourcenoteAustralian National Health and Medical Research Council (1,080,157 to SHL and GM, 1,028,569 to GLRS, 1,078,399 to GWM, 1,011,506 to NRW.); National Institutes of Health (GM099568 to PMV); National Institutes of Health (GM099568 to PMV); Belgian Science Policy Office Interuniversity Attraction Poles (BELSPO-IAP) programme (IAP P7/43-BeMGI to PMV)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP160102126en
local.search.authorChen, Guo-Boen
local.search.authorLee, Sang Hongen
local.search.authorMontgomery, Grant Wen
local.search.authorWray, Naomi Ren
local.search.authorVisscher, Peter Men
local.search.authorGearry, Richard Ben
local.search.authorLawrance, Ian Cen
local.search.authorAndrews, Jane Men
local.search.authorBampton, Peteren
local.search.authorMahy, Gillianen
local.search.authorBell, Sallyen
local.search.authorWalsh, Alissaen
local.search.authorConnor, Susanen
local.search.authorSparrow, Milesen
local.search.authorBowdler, Lisa Men
local.search.authorSimms, Lisa Aen
local.search.authorKrishnaprasad, Krupaen
local.search.authorRadford-Smith, Graham Len
local.search.authorMoser, Gerharden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/65898be2-718b-4c70-a162-5f73c1640a3cen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000408728900002en
local.year.published2017en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/65898be2-718b-4c70-a162-5f73c1640a3cen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/65898be2-718b-4c70-a162-5f73c1640a3cen
local.subject.for2020310506 Gene mappingen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/PerformanceLee2017JournalArticle.pdfPublished version712.47 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

37
checked on Nov 23, 2024

Page view(s)

1,138
checked on Aug 25, 2024

Download(s)

64
checked on Aug 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons