White mouse pups can use torpor for energy conservation

Title
White mouse pups can use torpor for energy conservation
Publication Date
2020-03
Author(s)
Renninger, Maura
Sprau, Lina
Geiser, Fritz
( author )
OrcID: https://orcid.org/0000-0001-7621-5049
Email: fgeiser@une.edu.au
UNE Id une-id:fgeiser
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Springer
Place of publication
Germany
DOI
10.1007/s00360-020-01263-8
UNE publication id
une:1959.11/51668
Abstract

White mice are ubiquitous laboratory animals and have been extensively studied. To reveal potential undiscovered traits, we tested the hypothesis that during development, when heat loss in mouse pups is high, they can use daily torpor for energy conservation. We determined at what age individual mouse pups are able to defend their body temperature at room temperature (ambient temperature, Ta = 20 °C) and whether they could use torpor from that time. Initially at 5/6 days (body mass, BM ~ 3 g), still naked mice cooled rapidly. In contrast, at ~ 14 days (BM ~ 6 g), they could maintain a high, constant body temperature and, therefore, had reached competent endothermy. These mouse pups at ~ 20% of adult BM were able to enter into and arouse from torpor as determined via the rate of oxygen consumption; this was the case for both individuals that were exposed to a cooling regime as well as those that were not. During torpor, metabolism fell by up to > 90% and torpor lasted for up to 12 h. As mice grew, torpor was still used but was less pronounced. Our study shows that although the physiology of laboratory mice has been widely examined, their functional capabilities have still not been fully revealed, which has implications for biomedicine. Our and other developmental data suggest that because torpor is so efficient in conserving energy, it is likely to be used during the growth phase by diverse mammals and birds to survive energetic and thermal challenges.

Link
Citation
Journal of Comparative Physiology B, 190(2), p. 253-259
ISSN
1432-136X
0174-1578
Pubmed ID
32030545
Start page
253
End page
259

Files:

NameSizeformatDescriptionLink