Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51519
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuarez, Luz Angelicaen
dc.contributor.authorRobson, Andrewen
dc.contributor.authorMcPhee, Johnen
dc.contributor.authorO'Halloran, Julieen
dc.contributor.authorvan Sprang, Celiaen
dc.date.accessioned2022-04-04T04:09:41Z-
dc.date.available2022-04-04T04:09:41Z-
dc.date.issued2020-12-
dc.identifier.citationPrecision Agriculture, 21(6), p. 1304-1326en
dc.identifier.issn1573-1618en
dc.identifier.issn1385-2256en
dc.identifier.urihttps://hdl.handle.net/1959.11/51519-
dc.description.abstract<p>Proximal and remote sensors have proved their effectiveness for the estimation of several biophysical and biochemical variables, including yield, in many different crops. Evaluation of their accuracy in vegetable crops is limited. This study explored the accuracy of proximal hyperspectral and satellite multispectral sensors (Sentinel-2 and WorldView-3) for the prediction of carrot root yield across three growing regions featuring different cropping configurations, seasons and soil conditions. Above ground biomass (AGB), canopy reflectance measurements and corresponding yield measures were collected from 414 sample sites in 24 fields in Western Australia (WA), Queensland (Qld) and Tasmania (Tas), Australia. The optimal sensor (hyperspectral or multispectral) was identified by the highest overall coefficient of determination between yield and different vegetation indices (VIs) whilst linear and non-linear models were tested to determine the best VIs and the impact of the spatial resolution. The optimal regression fit per region was used to extrapolate the point source measurements to all pixels in each sampled crop to produce a forecasted yield map and estimate average carrot root yield (t/ha) at the crop level. The latter were compared to commercial carrot root yield (t/ha) obtained from the growers to determine the accuracy of prediction. The measured yield varied from 17 to 113 t/ha across all crops, with forecasts of average yield achieving overall accuracies (% error) of 9.2% in WA, 10.2% in Qld and 12.7% in Tas. VIs derived from hyperspectral sensors produced poorer yield correlation coefficients (R<sup>2</sup> < 0.1) than similar measures from the multispectral sensors (R<sup>2</sup> < 0.57, <i>p</i> < 0.05). Increasing the spatial resolution from 10 to 1.2 m improved the regression performance by 69%. It is impossible to non-destructively estimate the pre-harvest spatial yield variability of root vegetables such as carrots. Hence, this method of yield forecasting offers great benefit for managing harvest logistics and forward selling decisions.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofPrecision Agricultureen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAccuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral dataen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s11119-020-09722-6en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameLuz Angelicaen
local.contributor.firstnameAndrewen
local.contributor.firstnameJohnen
local.contributor.firstnameJulieen
local.contributor.firstnameCeliaen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillsuarezc@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage1304en
local.format.endpage1326en
local.identifier.scopusid85085085621en
local.peerreviewedYesen
local.identifier.volume21en
local.identifier.issue6en
local.access.fulltextYesen
local.contributor.lastnameSuarezen
local.contributor.lastnameRobsonen
local.contributor.lastnameMcPheeen
local.contributor.lastnameO'Halloranen
local.contributor.lastnamevan Sprangen
dc.identifier.staffune-id:lsuarezcen
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0002-4233-2172en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51519en
local.date.onlineversion2020-05-02-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAccuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral dataen
local.relation.fundingsourcenoteThis project (VG16009) has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not-for-profit research and development corporation for Australian horticulture.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSuarez, Luz Angelicaen
local.search.authorRobson, Andrewen
local.search.authorMcPhee, Johnen
local.search.authorO'Halloran, Julieen
local.search.authorvan Sprang, Celiaen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/22a3e703-f542-4b48-b79f-55a4fbc8cdd3en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000530214800001en
local.year.available2020en
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/22a3e703-f542-4b48-b79f-55a4fbc8cdd3en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/22a3e703-f542-4b48-b79f-55a4fbc8cdd3en
local.subject.for2020460106 Spatial data and applicationsen
local.subject.seo2020260505 Field grown vegetable cropsen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
local.profile.affiliationtypeUnknownen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
3 files
File Description SizeFormat 
openpublished/AccuracySuarezRobson2020JournalArticle.pdfPublished version1.94 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

23
checked on Oct 26, 2024

Page view(s)

1,344
checked on May 26, 2024

Download(s)

14
checked on May 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons