Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/51468
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Truong, Buu | en |
dc.contributor.author | Zhou, Xuan | en |
dc.contributor.author | Shin, Jisu | en |
dc.contributor.author | Li, Jiuyong | en |
dc.contributor.author | Van Der Werf, Julius H J | en |
dc.contributor.author | Le, Thuc D | en |
dc.contributor.author | Lee, S Hong | en |
dc.date.accessioned | 2022-03-25T02:22:17Z | - |
dc.date.available | 2022-03-25T02:22:17Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Nature Communications, v.11, p. 1-11 | en |
dc.identifier.issn | 2041-1723 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/51468 | - |
dc.description.abstract | <p> Polygenic risk scores are emerging as a potentially powerful tool to predict future phenotypes of target individuals, typically using unrelated individuals, thereby devaluing information from relatives. Here, for 50 traits from the UK Biobank data, we show that a design of 5,000 individuals with first-degree relatives of target individuals can achieve a prediction accuracy similar to that of around 220,000 unrelated individuals (mean prediction accuracy = 0.26 vs. 0.24, mean fold-change = 1.06 (95% CI: 0.99-1.13), P-value = 0.08), despite a 44-fold difference in sample size. For lifestyle traits, the prediction accuracy with 5,000 individuals including first-degree relatives of target individuals is significantly higher than that with 220,000 unrelated individuals (mean prediction accuracy = 0.22 vs. 0.16, mean fold-change = 1.40 (1.17-1.62), P-value = 0.025). Our findings suggest that polygenic prediction integrating family information may help to accelerate precision health and clinical intervention. </p> | en |
dc.language | en | en |
dc.publisher | Nature Publishing Group | en |
dc.relation.ispartof | Nature Communications | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1038/s41467-020-16829-x | en |
dc.identifier.pmid | 32555176 | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | Science & Technology - Other Topics | en |
dc.subject.keywords | Multidisciplinary Sciences | en |
local.contributor.firstname | Buu | en |
local.contributor.firstname | Xuan | en |
local.contributor.firstname | Jisu | en |
local.contributor.firstname | Jiuyong | en |
local.contributor.firstname | Julius H J | en |
local.contributor.firstname | Thuc D | en |
local.contributor.firstname | S Hong | en |
local.relation.isfundedby | ARC | en |
local.relation.isfundedby | ARC | en |
local.relation.isfundedby | NHMRC | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | jvanderw@une.edu.au | en |
local.profile.email | slee38@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190100766 | en |
local.grant.number | FT160100229 | en |
local.grant.number | 1123042 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 3074 | en |
local.format.startpage | 1 | en |
local.format.endpage | 11 | en |
local.identifier.scopusid | 85086576330 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 11 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Truong | en |
local.contributor.lastname | Zhou | en |
local.contributor.lastname | Shin | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Van Der Werf | en |
local.contributor.lastname | Le | en |
local.contributor.lastname | Lee | en |
dc.identifier.staff | une-id:jvanderw | en |
dc.identifier.staff | une-id:slee38 | en |
local.profile.orcid | 0000-0003-2512-1696 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/51468 | en |
local.date.onlineversion | 2020-06-17 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190100766 | en |
local.relation.grantdescription | ARC/FT160100229 | en |
local.relation.grantdescription | NHMRC/1123042 | en |
local.search.author | Truong, Buu | en |
local.search.author | Zhou, Xuan | en |
local.search.author | Shin, Jisu | en |
local.search.author | Li, Jiuyong | en |
local.search.author | Van Der Werf, Julius H J | en |
local.search.author | Le, Thuc D | en |
local.search.author | Lee, S Hong | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000542951900007 | en |
local.year.available | 2020 | en |
local.year.published | 2020 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840 | en |
local.subject.for2020 | 310207 Statistical and quantitative genetics | en |
local.subject.seo2020 | 280102 Expanding knowledge in the biological sciences | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/EfficientVanDerWerfLee2020JournalArticle.pdf | Published version | 991.07 kB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
22
checked on Nov 23, 2024
Page view(s)
1,284
checked on Apr 7, 2024
Download(s)
32
checked on Apr 7, 2024
This item is licensed under a Creative Commons License