Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51468
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTruong, Buuen
dc.contributor.authorZhou, Xuanen
dc.contributor.authorShin, Jisuen
dc.contributor.authorLi, Jiuyongen
dc.contributor.authorVan Der Werf, Julius H Jen
dc.contributor.authorLe, Thuc Den
dc.contributor.authorLee, S Hongen
dc.date.accessioned2022-03-25T02:22:17Z-
dc.date.available2022-03-25T02:22:17Z-
dc.date.issued2020-
dc.identifier.citationNature Communications, v.11, p. 1-11en
dc.identifier.issn2041-1723en
dc.identifier.urihttps://hdl.handle.net/1959.11/51468-
dc.description.abstract<p> Polygenic risk scores are emerging as a potentially powerful tool to predict future phenotypes of target individuals, typically using unrelated individuals, thereby devaluing information from relatives. Here, for 50 traits from the UK Biobank data, we show that a design of 5,000 individuals with first-degree relatives of target individuals can achieve a prediction accuracy similar to that of around 220,000 unrelated individuals (mean prediction accuracy = 0.26 vs. 0.24, mean fold-change = 1.06 (95% CI: 0.99-1.13), P-value = 0.08), despite a 44-fold difference in sample size. For lifestyle traits, the prediction accuracy with 5,000 individuals including first-degree relatives of target individuals is significantly higher than that with 220,000 unrelated individuals (mean prediction accuracy = 0.22 vs. 0.16, mean fold-change = 1.40 (1.17-1.62), P-value = 0.025). Our findings suggest that polygenic prediction integrating family information may help to accelerate precision health and clinical intervention. </p>en
dc.languageenen
dc.publisherNature Publishing Groupen
dc.relation.ispartofNature Communicationsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEfficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relativesen
dc.typeJournal Articleen
dc.identifier.doi10.1038/s41467-020-16829-xen
dc.identifier.pmid32555176en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsScience & Technology - Other Topicsen
dc.subject.keywordsMultidisciplinary Sciencesen
local.contributor.firstnameBuuen
local.contributor.firstnameXuanen
local.contributor.firstnameJisuen
local.contributor.firstnameJiuyongen
local.contributor.firstnameJulius H Jen
local.contributor.firstnameThuc Den
local.contributor.firstnameS Hongen
local.relation.isfundedbyARCen
local.relation.isfundedbyARCen
local.relation.isfundedbyNHMRCen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailjvanderw@une.edu.auen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190100766en
local.grant.numberFT160100229en
local.grant.number1123042en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber3074en
local.format.startpage1en
local.format.endpage11en
local.identifier.scopusid85086576330en
local.peerreviewedYesen
local.identifier.volume11en
local.access.fulltextYesen
local.contributor.lastnameTruongen
local.contributor.lastnameZhouen
local.contributor.lastnameShinen
local.contributor.lastnameLien
local.contributor.lastnameVan Der Werfen
local.contributor.lastnameLeen
local.contributor.lastnameLeeen
dc.identifier.staffune-id:jvanderwen
dc.identifier.staffune-id:slee38en
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51468en
local.date.onlineversion2020-06-17-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEfficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relativesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190100766en
local.relation.grantdescriptionARC/FT160100229en
local.relation.grantdescriptionNHMRC/1123042en
local.search.authorTruong, Buuen
local.search.authorZhou, Xuanen
local.search.authorShin, Jisuen
local.search.authorLi, Jiuyongen
local.search.authorVan Der Werf, Julius H Jen
local.search.authorLe, Thuc Den
local.search.authorLee, S Hongen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000542951900007en
local.year.available2020en
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/6798813f-07fd-43a2-9602-8340a7a36840en
local.subject.for2020310207 Statistical and quantitative geneticsen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EfficientVanDerWerfLee2020JournalArticle.pdfPublished version991.07 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 23, 2024

Page view(s)

1,284
checked on Apr 7, 2024

Download(s)

32
checked on Apr 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons