Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51463
Title: From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products
Contributor(s): Sadgrove, Nicholas John  (author); Jones, Graham  (author)orcid 
Publication Date: 2019-10-31
Open Access: Yes
DOI: 10.3389/fmicb.2019.02470
Handle Link: https://hdl.handle.net/1959.11/51463
Abstract: 

The new era of multidrug resistance of pathogens against frontline antibiotics has compromised the immense therapeutic gains of the 'golden age,' stimulating a resurgence in antimicrobial research focused on antimicrobial and immunomodulatory components of botanical, fungal or microbial origin. While much valuable information has been amassed on the potency of crude extracts and, indeed, purified compounds there are too many reports that uncritically extrapolate observed in vitro activity to presumed ingestive and/or topical therapeutic value, particularly in the discipline of ethnopharmacology. Thus, natural product researchers would benefit from a basic pharmacokinetic and pharmacodynamic understanding. Furthermore, therapeutic success of complex mixtures or single components derived therefrom is not always proportionate to their MIC values, since immunomodulation can be the dominant mechanism of action. Researchers often fail to acknowledge this, particularly when 'null' activity is observed. In this review we introduce the most up to date theories of oral and topical bioavailability including the metabolic processes affecting xenobiotic biotransformation before and after drugs reach the site of their action in the body. We briefly examine the common methodologies employed in antimicrobial, immunomodulatory and pharmacokinetic research. Importantly, we emphasize the contribution of synergies and/or antagonisms in complex mixtures as they affect absorptive processes in the body and sometimes potentiate activity. Strictly in the context of natural product research, it is important to acknowledge the potential for chemotypic variation within important medicinal plants. Furthermore, polar head space and rotatable bonds give a priori indications of the likelihood of bioavailability of active metabolites. Considering this and other relatively simple chemical insights, we hope to provide the basis for a more rigorous scientific assessment, enabling researchers to predict the likelihood that observed in vitro anti-infective activity will translate to in vivo outcomes in a therapeutic context. We give worked examples of tentative pharmacokinetic assessment of some well-known medicinal plants.

Publication Type: Journal Article
Source of Publication: Frontiers in Microbiology, v.10, p. 1-26
Publisher: Frontiers Research Foundation
Place of Publication: Switzerland
ISSN: 1664-302X
Fields of Research (FoR) 2020: 310899 Plant biology not elsewhere classified
340502 Natural products and bioactive compounds
321499 Pharmacology and pharmaceutical sciences not elsewhere classified
Socio-Economic Objective (SEO) 2020: 209999 Other health not elsewhere classified
280101 Expanding knowledge in the agricultural, food and veterinary sciences
280103 Expanding knowledge in the biomedical and clinical sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Rural Medicine
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
openpublished/FromPetriSadgroveJones2019JournalArticle.pdfPublished version3.61 MBAdobe PDF
Download Adobe
View/Open
Show full item record

SCOPUSTM   
Citations

45
checked on Nov 2, 2024

Page view(s)

880
checked on Mar 8, 2023

Download(s)

36
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons