High-level thermochemistry for the octasulfur ring: A converged coupled cluster perspective for a challenging second-row system

Title
High-level thermochemistry for the octasulfur ring: A converged coupled cluster perspective for a challenging second-row system
Publication Date
2021-12
Author(s)
Karton, Amir
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Elsevier BV
Place of publication
Netherlands
DOI
10.1016/j.chphi.2021.100047
UNE publication id
une:1959.11/47027
Abstract

Sulfur clusters are challenging targets for high-level ab initio procedures. The heat of formation of the most common and energetically stable S8 allotrope (α-sulfur) has not been the subject of a high-level ab initio investigation. We apply the Weizmann-n computational thermochemistry protocols to the S8 sulfur cluster. We show that calculating the heat of formation with sub-chemical accuracy requires accurate treatment of post-CCSD (T), core-valence, scalar relativistic, and zero-point vibrational energy contributions. At the relativistic, all-electron CCSDT(Q)/CBS level of theory we obtain an enthalpy of formation at 0 K of ∆fH0 = 24.44 kcal mol–1, and at 298 K of ∆fH298 = 23.51 kcal mol–1. These values suggest that the experimental values from Gurvich (∆fH0 = 25.1 ± 0.5 kcal mol–1) and JANAF (∆fH0 = 24.95 ± 0.15 and ∆fH298 = 24.00 ± 0.15 kcal mol–1) represent overestimations and should be revised downward by 0.5–0.7 kcal mol–1. We also show that computationally economical composite ab initio protocols such as G4, G4(MP2), and CBS-QB3 are unable to achieve chemical accuracy relative to our best CCSDT(Q)/CBS heat of formation for S8.

Link
Citation
Chemical Physics Impact, v.3, p. 1-5
ISSN
2667-0224
Start page
1
End page
5
Rights
Attribution 4.0 International

Files:

NameSizeformatDescriptionLink
openpublished/HighLevelKarton2021JournalArticle.pdf 498.745 KB application/pdf Published version View document