Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/47027
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarton, Amiren
dc.date.accessioned2022-03-07T01:57:20Z-
dc.date.available2022-03-07T01:57:20Z-
dc.date.issued2021-12-
dc.identifier.citationChemical Physics Impact, v.3, p. 1-5en
dc.identifier.issn2667-0224en
dc.identifier.urihttps://hdl.handle.net/1959.11/47027-
dc.description.abstract<p>Sulfur clusters are challenging targets for high-level ab initio procedures. The heat of formation of the most common and energetically stable S<sub>8</sub> allotrope (α-sulfur) has not been the subject of a high-level ab initio investigation. We apply the Weizmann-<i>n</i> computational thermochemistry protocols to the S<sub>8</sub> sulfur cluster. We show that calculating the heat of formation with sub-chemical accuracy requires accurate treatment of post-CCSD (T), core-valence, scalar relativistic, and zero-point vibrational energy contributions. At the relativistic, all-electron CCSDT(Q)/CBS level of theory we obtain an enthalpy of formation at 0 K of ∆<sub>f</sub><i>H</i><sup>◦</sup><sub>0</sub> = 24.44 kcal mol<sup>–1</sup>, and at 298 K of ∆<sub>f</sub><i>H</i><sup>◦</sup><sub>298</sub> = 23.51 kcal mol<sup>–1</sup>. These values suggest that the experimental values from Gurvich (∆<sub>f</sub><i>H</i><sup>◦</sup><sub>0</sub> = 25.1 ± 0.5 kcal mol<sup>–1</sup>) and JANAF (∆<sub>f</sub><i>H</i><sup>◦</sup><sub>0</sub> = 24.95 ± 0.15 and ∆<sub>f</sub><i>H</i><sup>◦</sup><sub>298</sub> = 24.00 ± 0.15 kcal mol<sup>–1</sup>) represent overestimations and should be revised downward by 0.5–0.7 kcal mol<sup>–1</sup>. We also show that computationally economical composite ab initio protocols such as G4, G4(MP2), and CBS-QB3 are unable to achieve chemical accuracy relative to our best CCSDT(Q)/CBS heat of formation for S<sub>8</sub>.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofChemical Physics Impacten
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleHigh-level thermochemistry for the octasulfur ring: A converged coupled cluster perspective for a challenging second-row systemen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.chphi.2021.100047en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAmiren
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.grant.numberFT170100373en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber100047en
local.format.startpage1en
local.format.endpage5en
local.identifier.scopusid85126170441en
local.peerreviewedYesen
local.identifier.volume3en
local.title.subtitleA converged coupled cluster perspective for a challenging second-row systemen
local.access.fulltextYesen
local.contributor.lastnameKartonen
dc.identifier.staffune-id:akartonen
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/47027en
local.date.onlineversion2021-10-09-
dc.identifier.academiclevelAcademicen
local.title.maintitleHigh-level thermochemistry for the octasulfur ringen
local.relation.fundingsourcenoteThis research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. We also acknowledge system administration support provided by the Faculty of Science at the University of Western Australia to the Linux cluster of the Karton group. We gratefully acknowledge an Australian Research Council (ARC) Future Fellowship (FT170100373).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FT170100373en
local.search.authorKarton, Amiren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/539a2a19-322b-4bb7-bf08-ff29ca5a9820en
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2021en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/539a2a19-322b-4bb7-bf08-ff29ca5a9820en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/539a2a19-322b-4bb7-bf08-ff29ca5a9820en
local.subject.for2020340701 Computational chemistryen
local.subject.for2020340704 Theoretical quantum chemistryen
local.subject.for2020340799 Theoretical and computational chemistry not elsewhere classifieden
local.subject.seo2020280105 Expanding knowledge in the chemical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/HighLevelKarton2021JournalArticle.pdfPublished version487.06 kBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 28, 2024

Page view(s)

858
checked on Mar 8, 2023

Download(s)

6
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons