Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/45938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Zhiyangen
dc.contributor.authorHussain, Tanveeren
dc.contributor.authorKarton, Amiren
dc.contributor.authorEr, Süleymanen
dc.date.accessioned2022-03-02T03:07:13Z-
dc.date.available2022-03-02T03:07:13Z-
dc.date.issued2021-08-01-
dc.identifier.citationApplied Surface Science, v.556, p. 1-8en
dc.identifier.issn1873-5584en
dc.identifier.issn0169-4332en
dc.identifier.urihttps://hdl.handle.net/1959.11/45938-
dc.description.abstract<p>Using hydrogen as an energy carrier requires new technological solutions for its onboard storage. The exploration of two-dimensional (2D) materials for hydrogen storage technologies has been motivated by their open structures, which facilitates fast hydrogen kinetics. Herein, the hydrogen storage properties of lightweight metal functionalized <i>r</i><sub>57</sub> haeckelite sheets are studied using density functional theory (DFT) calculations. H<sub>2</sub> molecules are adsorbed on pristine <i>r</i><sub>57</sub> via physisorption. The hydrogen storage capacity of <i>r</i><sub>57</sub> is improved by decorating it with alkali and alkaline-earth metals. In addition, the in-plane substitution of <i>r</i><sub>57</sub> carbons with boron atoms (B@r<sub>57</sub>) both prevents the clustering of metals on the surface of 2D material and increases the hydrogen storage capacity by improving the adsorption thermodynamics of hydrogen molecules. Among the studied compounds, B@<i>r</i><sub>57</sub>-Li<sub>4</sub>, with its 10.0 wt% H<sub>2</sub> content and 0.16 eV/H<sub>2</sub> hydrogen binding energy, is a promising candidate for hydrogen storage applications. A further investigation, as based on the calculated electron localization functions, atomic charges, and electronic density of states, confirm the electrostatic nature of interactions between the H<sub>2</sub> molecules and the protruding metal atoms on 2D haeckelite sheets. All in all, this work contributes to a better understanding of pure carbon and B-doped haeckelites for hydrogen storage.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofApplied Surface Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEmpowering hydrogen storage properties of haeckelite monolayers via metal atom functionalizationen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.apsusc.2021.149709en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameZhiyangen
local.contributor.firstnameTanveeren
local.contributor.firstnameAmiren
local.contributor.firstnameSüleymanen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.grant.numberFT170100373en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber149709en
local.format.startpage1en
local.format.endpage8en
local.identifier.scopusid85104332954en
local.peerreviewedYesen
local.identifier.volume556en
local.access.fulltextYesen
local.contributor.lastnameLiuen
local.contributor.lastnameHussainen
local.contributor.lastnameKartonen
local.contributor.lastnameEren
dc.identifier.staffune-id:thussai3en
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0003-1973-4584en
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/45938en
local.date.onlineversion2021-04-15-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEmpowering hydrogen storage properties of haeckelite monolayers via metal atom functionalizationen
local.relation.fundingsourcenoteZL acknowledges the Fund of Post-doctoral Innovation Research Post (Grant No. 0106187143). SE acknowledges funding from the initiative ''Computational Sciences for Energy Research'' of Shell and NWO (Grant No. 15CSTT05). This work was sponsored by NWO Exact and Natural Sciences for the use of super-computer facilities.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FT170100373en
local.search.authorLiu, Zhiyangen
local.search.authorHussain, Tanveeren
local.search.authorKarton, Amiren
local.search.authorEr, Süleymanen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/b0909bc6-511c-4592-86cb-af93b151880den
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000734414100001en
local.year.available2021en
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/b0909bc6-511c-4592-86cb-af93b151880den
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/b0909bc6-511c-4592-86cb-af93b151880den
local.subject.for2020340701 Computational chemistryen
local.subject.for2020510403 Condensed matter modelling and density functional theoryen
local.subject.for2020340302 Macromolecular materialsen
local.subject.seo2020170308 Hydrogen storageen
local.subject.seo2020170803 Hydro-electric energyen
local.subject.seo2020170899 Renewable energy not elsewhere classifieden
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EmpoweringHussain2021JournalArticle.pdfPublished version4.3 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

25
checked on Jan 4, 2025

Page view(s)

896
checked on Mar 8, 2023

Download(s)

66
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons