Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/45113
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | la Cecilia, Daniele | en |
dc.contributor.author | Porta, Giovanni M | en |
dc.contributor.author | Tang, Fiona H M | en |
dc.contributor.author | Riva, Monica | en |
dc.contributor.author | Maggi, Federico | en |
dc.date.accessioned | 2022-02-27T21:11:05Z | - |
dc.date.available | 2022-02-27T21:11:05Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.citation | Ecological Indicators, v.115, p. 1-13 | en |
dc.identifier.issn | 1872-7034 | en |
dc.identifier.issn | 1470-160X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/45113 | - |
dc.description.abstract | <p>Deterministic assessments of whether, when, and where environmental safety thresholds are exceeded by pollutants are often unreliable due to uncertainty stemming from incomplete knowledge of the properties of environmental systems and limited sampling. We present a global sensitivity analysis to rank the contribution of uncertain parameters to the probability, <i>P</i>, of a target quantity to exceed user-defined environmental safety thresholds. To this end, we propose a new index (<i>AMAP</i>) which quantifies the impact of a parameter on <i>P</i> and can be readily employed in probabilistic risk assessment. We apply <i>AMAP</i>, along with existing moment-based sensitivity indices, to quantify the sensitivity of soil and aquifer contamination following herbicide glyphosate (GLP) dispersal to soil hydraulic parameters. Target quantities are GLP and its toxic metabolite aminomethyl-phosphonic acid (AMPA) concentrations in the top soil as well as their leaching below the root zone. The global sensitivity analysis encompasses six scenarios of managed water amendments and rainfall events. The biodegradation of GLP and AMPA varies slightly across scenarios, while leaching below the root zone is greatly affected by the assumed hydrologic boundary conditions. <i>AMAP</i> shows that, among the tested uncertain parameters, absolute permeability, air-entry suction, and porosity have the greatest impact on GLP and AMPA probability to pollute the aquifer by exceeding the aqueous concentration thresholds. Our results show that <i>AMAP</i> is effective to thoroughly explore time histories arising from model-based predictions of environmental pollution hazards. The proposed methodology may support informed decision making in risk assessments and help assessing ecological indicators through threshold-based analyses.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Ecological Indicators | en |
dc.title | Probabilistic indicators for soil and groundwater contamination risk assessment | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.ecolind.2020.106424 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Daniele | en |
local.contributor.firstname | Giovanni M | en |
local.contributor.firstname | Fiona H M | en |
local.contributor.firstname | Monica | en |
local.contributor.firstname | Federico | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | ftang2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Netherlands | en |
local.identifier.runningnumber | 106424 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.identifier.scopusid | 85084059498 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 115 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | la Cecilia | en |
local.contributor.lastname | Porta | en |
local.contributor.lastname | Tang | en |
local.contributor.lastname | Riva | en |
local.contributor.lastname | Maggi | en |
dc.identifier.staff | une-id:ftang2 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/45113 | en |
local.date.onlineversion | 2020-05-01 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Probabilistic indicators for soil and groundwater contamination risk assessment | en |
local.relation.fundingsourcenote | We acknowledge the support of the University of Sydney through the SREI2020 EnviroSphere research program, the University of Sydney Mid-career Research Award and SOAR Fellowship supporting F. Maggi. G.M. Porta and M. Riva acknowledge the EU and MIUR for funding, in the frame of the collaborative international Consortium (WE-NEED) financed under the ERA-NET WaterWorks2014 Cofunded Call. The authors acknowledge the Sydney Informatics Hub and the University of Sydney's high performance computing cluster Artemis for providing the high performance computing resources that have contributed to the research results reported within this paper. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | la Cecilia, Daniele | en |
local.search.author | Porta, Giovanni M | en |
local.search.author | Tang, Fiona H M | en |
local.search.author | Riva, Monica | en |
local.search.author | Maggi, Federico | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/ebdeb18f-806f-45ab-80cb-81be69273910 | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2020 | en |
local.year.published | 2020 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/ebdeb18f-806f-45ab-80cb-81be69273910 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/ebdeb18f-806f-45ab-80cb-81be69273910 | en |
local.subject.for2020 | 410402 Environmental assessment and monitoring | en |
local.subject.for2020 | 410601 Land capability and soil productivity | en |
local.subject.seo2020 | 180601 Assessment and management of terrestrial ecosystems | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Size | Format | |
---|---|---|---|
openpublished/ProbabilisticTang2020JournalArticle.pdf | 2.82 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
19
checked on Dec 21, 2024
Page view(s)
856
checked on Mar 8, 2023
Download(s)
10
checked on Mar 8, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.