Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/45014
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde las Heras-Saldana, Saraen
dc.contributor.authorLopez, Bryan Irvineen
dc.contributor.authorMoghaddar, Nasiren
dc.contributor.authorPark, Woncheoulen
dc.contributor.authorPark, Jong-eunen
dc.contributor.authorChung, Ki Yen
dc.contributor.authorLim, Dajeongen
dc.contributor.authorLee, Seung Hen
dc.contributor.authorShin, Donghyunen
dc.contributor.authorvan der Werf, Julius H Jen
dc.date.accessioned2022-02-25T04:21:31Z-
dc.date.available2022-02-25T04:21:31Z-
dc.date.issued2020-
dc.identifier.citationGenetics Selection Evolution, 52(1), p. 1-16en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/45014-
dc.description.abstract<p><b>Background:</b> In this study, we assessed the accuracy of genomic prediction for carcass weight (CWT), marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT) in Hanwoo cattle when using genomic best linear unbiased prediction (GBLUP), weighted GBLUP (wGBLUP), and a BayesR model. For these models, we investigated the potential gain from using pre-selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on imputed sequence data and from gene expression information. We used data on 13,717 animals with carcass phenotypes and imputed sequence genotypes that were split in an independent GWAS discovery set of varying size and a remaining set for validation of prediction. Expression data were used from a Hanwoo gene expression experiment based on 45 animals.</p> <p><b>Results:</b> Using a larger number of animals in the reference set increased the accuracy of genomic prediction whereas a larger independent GWAS discovery dataset improved identification of predictive SNPs. Using pre-selected SNPs from GWAS in GBLUP improved accuracy of prediction by 0.02 for EMA and up to 0.05 for BFT, CWT, and MS, compared to a 50 k standard SNP array that gave accuracies of 0.50, 0.47, 0.58, and 0.47, respectively. Accuracy of prediction of BFT and CWT increased when BayesR was applied with the 50 k SNP array (0.02 and 0.03, respectively) and was further improved by combining the 50 k array with the top-SNPs (0.06 and 0.04, respectively). By contrast, using BayesR resulted in limited improvement for EMA and MS. wGBLUP did not improve accuracy but increased prediction bias. Based on the RNA-seq experiment, we identified informative expression quantitative trait loci, which, when used in GBLUP, improved the accuracy of prediction slightly, i.e. between 0.01 and 0.02. SNPs that were located in genes, the expression of which was associated with differences in trait phenotype, did not contribute to a higher prediction accuracy.</p>en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleUse of gene expression and whole-genome sequence information to improve the accuracy of genomic prediction for carcass traits in Hanwoo cattleen
dc.typeJournal Articleen
dc.identifier.doi10.1186/s12711-020-00574-2en
dc.identifier.pmid32993481en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameSaraen
local.contributor.firstnameBryan Irvineen
local.contributor.firstnameNasiren
local.contributor.firstnameWoncheoulen
local.contributor.firstnameJong-eunen
local.contributor.firstnameKi Yen
local.contributor.firstnameDajeongen
local.contributor.firstnameSeung Hen
local.contributor.firstnameDonghyunen
local.contributor.firstnameJulius H Jen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailsdelash2@une.edu.auen
local.profile.emailnmoghad4@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber54en
local.format.startpage1en
local.format.endpage16en
local.identifier.scopusid85092413024en
local.peerreviewedYesen
local.identifier.volume52en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnamede las Heras-Saldanaen
local.contributor.lastnameLopezen
local.contributor.lastnameMoghaddaren
local.contributor.lastnameParken
local.contributor.lastnameParken
local.contributor.lastnameChungen
local.contributor.lastnameLimen
local.contributor.lastnameLeeen
local.contributor.lastnameShinen
local.contributor.lastnamevan der Werfen
dc.identifier.staffune-id:sdelash2en
dc.identifier.staffune-id:nmoghad4en
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0002-8665-6160en
local.profile.orcid0000-0002-3600-7752en
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/45014en
local.date.onlineversion2020-09-29-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUse of gene expression and whole-genome sequence information to improve the accuracy of genomic prediction for carcass traits in Hanwoo cattleen
local.relation.fundingsourcenoteThe authors gratefully acknowledge funding from the BIOGREEN project (No. PJ012611). Bryan Irvine Lopez was supported by the 2020 RDA Research Associate Fellowship Program of the National Institute of Animal Science, Rural Development Administration, Republic of Korea.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorde las Heras-Saldana, Saraen
local.search.authorLopez, Bryan Irvineen
local.search.authorMoghaddar, Nasiren
local.search.authorPark, Woncheoulen
local.search.authorPark, Jong-eunen
local.search.authorChung, Ki Yen
local.search.authorLim, Dajeongen
local.search.authorLee, Seung Hen
local.search.authorShin, Donghyunen
local.search.authorvan der Werf, Julius H Jen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/846fd1dc-b703-4bb0-a21f-c41b8754c681en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000576887300002en
local.year.available2020en
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/846fd1dc-b703-4bb0-a21f-c41b8754c681en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/846fd1dc-b703-4bb0-a21f-c41b8754c681en
local.subject.for2020310509 Genomicsen
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020310505 Gene expression (incl. microarray and other genome-wide approaches)en
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/UseOfGeneDeLasHerasSaldanaMoghaddarVanDerWerf2020JournalArticle.pdfPublished version1.98 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

30
checked on Nov 23, 2024

Page view(s)

1,328
checked on Feb 25, 2024

Download(s)

30
checked on Feb 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons