Asymptotic Behavior of Solutions of Semilinear Elliptic Equations Near an Isolated Singularity

Title
Asymptotic Behavior of Solutions of Semilinear Elliptic Equations Near an Isolated Singularity
Publication Date
2007
Author(s)
Cirstea, Florica Corina
Du, Yihong
( author )
OrcID: https://orcid.org/0000-0002-1235-0636
Email: ydu@une.edu.au
UNE Id une-id:ydu
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Elsevier Inc
Place of publication
United States of America
DOI
10.1016/j.jfa.2007.05.005
UNE publication id
une:4048
Abstract
We consider the semilinear elliptic equation Δu=h(u) in Ω {0}, where Ω is an open subset of ℝ^N (N≥2) containing the origin and h is locally Lipschitz continuous on [0,∞), positive in (0,∞). We give a complete classification of isolated singularities of positive solutions when h varies regularly at infinity of index q ∈ (1,CN)(that is, limu→∞h(λu)/h(u)=λ^q, for every λ>0), where CN denotes either N/(N-2) if N≥3 or ∞ if N=2. Our result extends a well-known theorem of Véron for the case h(u)=u^q.
Link
Citation
Journal of Functional Analysis, 250(2), p. 317-346
ISSN
1096-0783
0022-1236
Start page
317
End page
346

Files:

NameSizeformatDescriptionLink