Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/37820
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lopez, Bryan Irvine | en |
dc.contributor.author | Lee, Seung-Hwan | en |
dc.contributor.author | Park, Jong-Eun | en |
dc.contributor.author | Shin, Dong-Hyun | en |
dc.contributor.author | Oh, Jae-Don | en |
dc.contributor.author | de las Heras-Saldana, Sara | en |
dc.contributor.author | Van Der Werf, Julius | en |
dc.contributor.author | Chai, Han-Ha | en |
dc.contributor.author | Park, Woncheoul | en |
dc.contributor.author | Lim, Dajeong | en |
dc.date.accessioned | 2022-01-31T02:41:51Z | - |
dc.date.available | 2022-01-31T02:41:51Z | - |
dc.date.issued | 2019-12 | - |
dc.identifier.citation | Genes, 10(12), p. 1-13 | en |
dc.identifier.issn | 2073-4425 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/37820 | - |
dc.description.abstract | <p>The genomic best linear unbiased prediction (GBLUP) method has been widely used in routine genomic evaluation as it assumes a common variance for all single nucleotide polymorphism (SNP). However, this is unlikely in the case of traits influenced by major SNP. Hence, the present study aimed to improve the accuracy of GBLUP by using the weighted GBLUP (WGBLUP), which gives more weight to important markers for various carcass traits of Hanwoo cattle, such as backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Linear and different nonlinearA SNP weighting procedures under WGBLUP were evaluated and compared with unweighted GBLUP and traditional pedigree-based methods (PBLUP). WGBLUP methods were assessed over ten iterations. Phenotypic data from 10,215 animals from different commercial herds that were slaughtered at approximately 30-month-old of age were used. All these animals were genotyped using customized Hanwoo 50K SNP chip and were divided into a training and a validation population by birth date on 1 November 2015. Genomic prediction accuracies obtained in the nonlinearA weighting methods were higher than those of the linear weighting for all traits. Moreover, unlike with linear methods, no sudden drops in the accuracy were noted after the peak was reached in nonlinearA methods. The average accuracies using PBLUP were 0.37, 0.49, 0.40, and 0.37, and 0.62, 0.74, 0.67, and 0.65 using GBLUP for BFT, CWT, EMA, and MS, respectively. Moreover, these accuracies of genomic prediction were further increased to 4.84% and 2.70% for BFT and CWT, respectively by using the nonlinearA method under the WGBLUP model. For EMA and MS, WGBLUP was as accurate as GBLUP. Our results indicate that the WGBLUP using a nonlinearA weighting method provides improved predictions for CWT and BFT, suggesting that the ability of WGBLUP over the other models by weighting selected SNPs appears to be trait-dependent.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Genes | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Weighted Genomic Best Linear Unbiased Prediction for Carcass Traits in Hanwoo Cattle | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/genes10121019 | en |
dc.identifier.pmid | 31817753 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Bryan Irvine | en |
local.contributor.firstname | Seung-Hwan | en |
local.contributor.firstname | Jong-Eun | en |
local.contributor.firstname | Dong-Hyun | en |
local.contributor.firstname | Jae-Don | en |
local.contributor.firstname | Sara | en |
local.contributor.firstname | Julius | en |
local.contributor.firstname | Han-Ha | en |
local.contributor.firstname | Woncheoul | en |
local.contributor.firstname | Dajeong | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | sdelash2@une.edu.au | en |
local.profile.email | jvanderw@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 1019 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.identifier.scopusid | 85076314661 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 10 | en |
local.identifier.issue | 12 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Lopez | en |
local.contributor.lastname | Lee | en |
local.contributor.lastname | Park | en |
local.contributor.lastname | Shin | en |
local.contributor.lastname | Oh | en |
local.contributor.lastname | de las Heras-Saldana | en |
local.contributor.lastname | Van Der Werf | en |
local.contributor.lastname | Chai | en |
local.contributor.lastname | Park | en |
local.contributor.lastname | Lim | en |
dc.identifier.staff | une-id:sdelash2 | en |
dc.identifier.staff | une-id:jvanderw | en |
local.profile.orcid | 0000-0002-8665-6160 | en |
local.profile.orcid | 0000-0003-2512-1696 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/37820 | en |
local.date.onlineversion | 2019-12-06 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Weighted Genomic Best Linear Unbiased Prediction for Carcass Traits in Hanwoo Cattle | en |
local.relation.fundingsourcenote | This work was supported by AGENDA project (No. PJ01316901) and the 2019 RDA Research Associate Fellowship Program of the National Institute of Animal Science, Rural Development Administration, Republic of Korea. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.doi | 10.3390/genes11091013 | en |
local.search.author | Lopez, Bryan Irvine | en |
local.search.author | Lee, Seung-Hwan | en |
local.search.author | Park, Jong-Eun | en |
local.search.author | Shin, Dong-Hyun | en |
local.search.author | Oh, Jae-Don | en |
local.search.author | de las Heras-Saldana, Sara | en |
local.search.author | Van Der Werf, Julius | en |
local.search.author | Chai, Han-Ha | en |
local.search.author | Park, Woncheoul | en |
local.search.author | Lim, Dajeong | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000507342400072 | en |
local.year.available | 2019 | en |
local.year.published | 2019 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10 | en |
local.subject.for2020 | 300305 Animal reproduction and breeding | en |
local.subject.for2020 | 310509 Genomics | en |
local.subject.seo2020 | 100401 Beef cattle | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/WeightedDeLasHerasSaldanaVanDerWerf2019JournalArticle.pdf | Published version | 1.94 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
12
checked on Dec 14, 2024
Page view(s)
1,378
checked on Feb 25, 2024
Download(s)
12
checked on Feb 25, 2024
This item is licensed under a Creative Commons License