Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/37820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopez, Bryan Irvineen
dc.contributor.authorLee, Seung-Hwanen
dc.contributor.authorPark, Jong-Eunen
dc.contributor.authorShin, Dong-Hyunen
dc.contributor.authorOh, Jae-Donen
dc.contributor.authorde las Heras-Saldana, Saraen
dc.contributor.authorVan Der Werf, Juliusen
dc.contributor.authorChai, Han-Haen
dc.contributor.authorPark, Woncheoulen
dc.contributor.authorLim, Dajeongen
dc.date.accessioned2022-01-31T02:41:51Z-
dc.date.available2022-01-31T02:41:51Z-
dc.date.issued2019-12-
dc.identifier.citationGenes, 10(12), p. 1-13en
dc.identifier.issn2073-4425en
dc.identifier.urihttps://hdl.handle.net/1959.11/37820-
dc.description.abstract<p>The genomic best linear unbiased prediction (GBLUP) method has been widely used in routine genomic evaluation as it assumes a common variance for all single nucleotide polymorphism (SNP). However, this is unlikely in the case of traits influenced by major SNP. Hence, the present study aimed to improve the accuracy of GBLUP by using the weighted GBLUP (WGBLUP), which gives more weight to important markers for various carcass traits of Hanwoo cattle, such as backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Linear and different nonlinearA SNP weighting procedures under WGBLUP were evaluated and compared with unweighted GBLUP and traditional pedigree-based methods (PBLUP). WGBLUP methods were assessed over ten iterations. Phenotypic data from 10,215 animals from different commercial herds that were slaughtered at approximately 30-month-old of age were used. All these animals were genotyped using customized Hanwoo 50K SNP chip and were divided into a training and a validation population by birth date on 1 November 2015. Genomic prediction accuracies obtained in the nonlinearA weighting methods were higher than those of the linear weighting for all traits. Moreover, unlike with linear methods, no sudden drops in the accuracy were noted after the peak was reached in nonlinearA methods. The average accuracies using PBLUP were 0.37, 0.49, 0.40, and 0.37, and 0.62, 0.74, 0.67, and 0.65 using GBLUP for BFT, CWT, EMA, and MS, respectively. Moreover, these accuracies of genomic prediction were further increased to 4.84% and 2.70% for BFT and CWT, respectively by using the nonlinearA method under the WGBLUP model. For EMA and MS, WGBLUP was as accurate as GBLUP. Our results indicate that the WGBLUP using a nonlinearA weighting method provides improved predictions for CWT and BFT, suggesting that the ability of WGBLUP over the other models by weighting selected SNPs appears to be trait-dependent.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofGenesen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleWeighted Genomic Best Linear Unbiased Prediction for Carcass Traits in Hanwoo Cattleen
dc.typeJournal Articleen
dc.identifier.doi10.3390/genes10121019en
dc.identifier.pmid31817753en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameBryan Irvineen
local.contributor.firstnameSeung-Hwanen
local.contributor.firstnameJong-Eunen
local.contributor.firstnameDong-Hyunen
local.contributor.firstnameJae-Donen
local.contributor.firstnameSaraen
local.contributor.firstnameJuliusen
local.contributor.firstnameHan-Haen
local.contributor.firstnameWoncheoulen
local.contributor.firstnameDajeongen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailsdelash2@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1019en
local.format.startpage1en
local.format.endpage13en
local.identifier.scopusid85076314661en
local.peerreviewedYesen
local.identifier.volume10en
local.identifier.issue12en
local.access.fulltextYesen
local.contributor.lastnameLopezen
local.contributor.lastnameLeeen
local.contributor.lastnameParken
local.contributor.lastnameShinen
local.contributor.lastnameOhen
local.contributor.lastnamede las Heras-Saldanaen
local.contributor.lastnameVan Der Werfen
local.contributor.lastnameChaien
local.contributor.lastnameParken
local.contributor.lastnameLimen
dc.identifier.staffune-id:sdelash2en
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0002-8665-6160en
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/37820en
local.date.onlineversion2019-12-06-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleWeighted Genomic Best Linear Unbiased Prediction for Carcass Traits in Hanwoo Cattleen
local.relation.fundingsourcenoteThis work was supported by AGENDA project (No. PJ01316901) and the 2019 RDA Research Associate Fellowship Program of the National Institute of Animal Science, Rural Development Administration, Republic of Korea.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.doi10.3390/genes11091013en
local.search.authorLopez, Bryan Irvineen
local.search.authorLee, Seung-Hwanen
local.search.authorPark, Jong-Eunen
local.search.authorShin, Dong-Hyunen
local.search.authorOh, Jae-Donen
local.search.authorde las Heras-Saldana, Saraen
local.search.authorVan Der Werf, Juliusen
local.search.authorChai, Han-Haen
local.search.authorPark, Woncheoulen
local.search.authorLim, Dajeongen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000507342400072en
local.year.available2019en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/691e40ab-079b-42a2-be2f-010ef6965d10en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020310509 Genomicsen
local.subject.seo2020100401 Beef cattleen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/WeightedDeLasHerasSaldanaVanDerWerf2019JournalArticle.pdfPublished version1.94 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

12
checked on Dec 14, 2024

Page view(s)

1,378
checked on Feb 25, 2024

Download(s)

12
checked on Feb 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons