Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/37490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShojaeipour, Alien
dc.contributor.authorFalzon, Gregen
dc.contributor.authorKwan, Paulen
dc.contributor.authorHadavi, Nooshinen
dc.contributor.authorCowley, Frances Cen
dc.contributor.authorPaul, Daviden
dc.date.accessioned2022-01-28T02:21:02Z-
dc.date.available2022-01-28T02:21:02Z-
dc.date.issued2021-11-
dc.identifier.citationAgronomy, 11(11), p. 1-16en
dc.identifier.issn2073-4395en
dc.identifier.urihttps://hdl.handle.net/1959.11/37490-
dc.description.abstractLivestock welfare and management could be greatly enhanced by the replacement of branding or ear tagging with less invasive visual biometric identification methods. Biometric identification of cattle from muzzle patterns has previously indicated promising results. Significant barriers exist in the translation of these initial findings into a practical precision livestock monitoring system, which can be deployed at scale for large herds. The objective of this study was to investigate and address key limitations to the autonomous biometric identification of cattle. The contributions of this work are fourfold: (1) provision of a large publicly-available dataset of cattle face images (300 individual cattle) to facilitate further research in this field, (2) development of a two-stage YOLOv3-ResNet50 algorithm that first detects and extracts the cattle muzzle region in images and then applies deep transfer learning for biometric identification, (3) evaluation of model performance across a range of cattle breeds, and (4) utilizing few-shot learning (five images per individual) to greatly reduce both the data collection requirements and duration of model training. Results indicated excellent model performance. Muzzle detection accuracy was 99.13% (1024 × 1024 image resolution) and biometric identification achieved 99.11% testing accuracy. Overall, the two-stage YOLOv3-ResNet50 algorithm proposed has substantial potential to form the foundation of a highly accurate automated cattle biometric identification system, which is applicable in livestock farming systems. The obtained results indicate that utilizing livestock biometric monitoring in an advanced manner for resource management at multiple scales of production is possible for future agriculture decision support systems, including providing useful information to forecast acceptable stocking rates of pastures.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofAgronomyen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAutomated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattleen
dc.typeJournal Articleen
dc.identifier.doi10.3390/agronomy11112365en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAlien
local.contributor.firstnameGregen
local.contributor.firstnamePaulen
local.contributor.firstnameNooshinen
local.contributor.firstnameFrances Cen
local.contributor.firstnameDaviden
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailashojae2@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.profile.emailnhadavi@une.edu.auen
local.profile.emailfcowley@une.edu.auen
local.profile.emaildpaul4@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber2365en
local.format.startpage1en
local.format.endpage16en
local.identifier.scopusid85120079086en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue11en
local.access.fulltextYesen
local.contributor.lastnameShojaeipouren
local.contributor.lastnameFalzonen
local.contributor.lastnameKwanen
local.contributor.lastnameHadavien
local.contributor.lastnameCowleyen
local.contributor.lastnamePaulen
dc.identifier.staffune-id:ashojae2en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:wkwan2en
dc.identifier.staffune-id:nhadavien
dc.identifier.staffune-id:fcowleyen
dc.identifier.staffune-id:dpaul4en
local.profile.orcid0000-0002-1989-9357en
local.profile.orcid0000-0002-6475-1503en
local.profile.orcid0000-0002-2428-5667en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/37490en
local.date.onlineversion2021-11-22-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAutomated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattleen
local.relation.fundingsourcenoteInternational Post-graduate Award (IPRA) scholarship for Ali Shojaeipouren
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorShojaeipour, Alien
local.search.authorFalzon, Gregen
local.search.authorKwan, Paulen
local.search.authorHadavi, Nooshinen
local.search.authorCowley, Frances Cen
local.search.authorPaul, Daviden
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/d23bcaa0-fc2a-48e1-bfb6-13224db8ba0cen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000834764600001en
local.year.available2021-
local.year.published2021-
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/d23bcaa0-fc2a-48e1-bfb6-13224db8ba0cen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/d23bcaa0-fc2a-48e1-bfb6-13224db8ba0cen
local.subject.for2020460103 Applications in life sciencesen
local.subject.for2020300302 Animal managementen
local.subject.seo2020100401 Beef cattleen
local.subject.seo2020100402 Dairy cattleen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AutomatedShojaeipourFalzonKwanHadaviCowleyPaul2021JournalArticle.pdfPublished version5.13 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

34
checked on Dec 14, 2024

Page view(s)

1,732
checked on Aug 3, 2024

Download(s)

68
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons