Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/3722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeller, Matthew Cen
dc.contributor.authorCoventry, William Luyaen
dc.date.accessioned2009-12-09T16:12:00Z-
dc.date.issued2005-
dc.identifier.citationTwin Research and Human Genetics, 8(3), p. 201-213en
dc.identifier.issn1839-2628en
dc.identifier.issn1832-4274en
dc.identifier.urihttps://hdl.handle.net/1959.11/3722-
dc.description.abstractThe classical twin design (CTD) is the most common method used to infer genetic and environmental causes of phenotypic variation. As has long been acknowledged, different combinations of the common environment/assortative mating, and additive, dominant, and epistatic genetic effects can lead to the same observed covariation between twin pairs, meaning that there is an inherent indeterminacy in parameter estimates arising from the CTD. The CTD circumvents this indeterminacy by assuming that higher-order epistasis is negligible and that the effects of either dominant genetic variation or the common environment are nonexistent. These assumptions, however, lead to consistent biases in parameter estimation. The current paper quantifies these biases and discusses alternative strategies for dealing with parameter indeterminacy in twin designs. One strategy is to model the similarity among other relatives in addition to twins (extended twin-family designs), which reduces but does not eliminate indeterminacy in parameter estimates. A more general strategy, applicable to all twin designs, is to present the parameter indeterminacy explicitly, as in a graph. Presenting the space of mathematically equally likely parameter values is important, not only because it aids the proper interpretation of twin design findings, but also because it keeps behavioral geneticists themselves mindful of methodological assumptions that can easily go unexamined.en
dc.languageenen
dc.publisherCambridge University Pressen
dc.relation.ispartofTwin Research and Human Geneticsen
dc.titleQuantifying and Addressing Parameter Indeterminacy in the Classical Twin Designen
dc.typeJournal Articleen
dc.identifier.doi10.1375/twin.8.3.201en
dc.subject.keywordsQuantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.contributor.firstnameMatthew Cen
local.contributor.firstnameWilliam Luyaen
local.subject.for2008060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.subject.seo2008920110 Inherited Diseases (incl. Gene Therapy)en
local.profile.schoolSchool of Psychologyen
local.profile.emailwcovent2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordpes:2621en
local.publisher.placeAustraliaen
local.format.startpage201en
local.format.endpage213en
local.peerreviewedYesen
local.identifier.volume8en
local.identifier.issue3en
local.contributor.lastnameKelleren
local.contributor.lastnameCoventryen
dc.identifier.staffune-id:wcovent2en
local.profile.orcid0000-0003-0864-5463en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:3814en
dc.identifier.academiclevelAcademicen
local.title.maintitleQuantifying and Addressing Parameter Indeterminacy in the Classical Twin Designen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKeller, Matthew Cen
local.search.authorCoventry, William Luyaen
local.uneassociationUnknownen
local.year.published2005en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

Page view(s)

1,176
checked on Mar 10, 2024

Download(s)

2
checked on Mar 10, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.