Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/32078
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Ni, Wenjie | en |
dc.date.accessioned | 2021-11-21T22:41:14Z | - |
dc.date.available | 2021-11-21T22:41:14Z | - |
dc.date.issued | 2022-01-25 | - |
dc.identifier.citation | Journal of Differential Equations, v.308, p. 369-420 | en |
dc.identifier.issn | 1090-2732 | en |
dc.identifier.issn | 0022-0396 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/32078 | - |
dc.description.abstract | <p>We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in some of the equations in the system. Such a system covers various models arising from mathematical biology, in particular a West Nile virus model and an epidemic model considered recently in [16] and [44], respectively, where a "spreading-vanishing" dichotomy is known to govern the long time dynamical behaviour, but the question on spreading speed was left open. In this paper, we develop a systematic approach to determine the spreading profile of the system, and obtain threshold conditions on the kernel functions which decide exactly when the spreading has finite speed, or infinite speed (accelerated spreading). This relies on a rather complete understanding of both the associated semi-waves and travelling waves. When the spreading speed is finite, we show that the speed is determined by a particular semi-wave. This is Part 1 of a two part series. In Part 2, for some typical classes of kernel functions, we will obtain sharp estimates of the spreading rate for both the finite speed case, and the infinite speed case.</p> | en |
dc.language | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartof | Journal of Differential Equations | en |
dc.title | Spreading speed for some cooperative systems with nonlocal diffusion and free boundaries, part 1: Semi-wave and a threshold condition | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jde.2021.11.014 | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Wenjie | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.email | wni2@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 369 | en |
local.format.endpage | 420 | en |
local.identifier.scopusid | 85119183014 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 308 | en |
local.title.subtitle | Semi-wave and a threshold condition | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Ni | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.staff | une-id:wni2 | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.orcid | 0000-0002-3147-7296 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/32078 | en |
local.date.onlineversion | 2021-11-17 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Spreading speed for some cooperative systems with nonlocal diffusion and free boundaries, part 1 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Du, Yihong | en |
local.search.author | Ni, Wenjie | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000722871700008 | en |
local.year.available | 2021 | en |
local.year.published | 2022 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/e79fc368-fd39-4f5b-8066-3b07822d4949 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-22T09:50:48.146 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
19
checked on Dec 14, 2024
Page view(s)
1,382
checked on Aug 11, 2024
Download(s)
2
checked on Aug 11, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.