Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorGui, Changfengen
dc.contributor.authorWang, Keleien
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2021-11-12T04:11:35Z-
dc.date.available2021-11-12T04:11:35Z-
dc.date.issued2021-
dc.identifier.citationProceedings of the American Mathematical Society, 149(5), p. 2091-2104en
dc.identifier.issn1088-6826en
dc.identifier.issn0002-9939en
dc.identifier.urihttps://hdl.handle.net/1959.11/31913-
dc.description.abstract<p>We show that for a monostable, bistable or combustion type of nonlinear function <i>f</i> (<i>u</i>), the Stefan problem</p> <table><tr><td>{</td><td>u<sub>t</sup> -∆ <i>u = f</i>(<i>u</i>), <i>u</i> > 0</td><td> for <i>x</i> ∈ Ω(<i>t</i>) ⊂ ℝ<sup>n+1</sup>,</td><tr><tr><td> </td><td><i>u</i> = 0 and <i>u</i><sub>t</sub> = μ | ∇<sub>x</sub><i>u</i>|<sup>2</sup></td><td>for x ∈ Ω<sub>t</sup>,</td></tr></table> <p>has a traveling wave solution whose free boundary is Λ-shaped, and whose speed is κ, where κ can be any given positive number satisfying κ > κ<sub>*</sub>, and κ<sub>*</sub> is the unique speed for which the above Stefan problem has a planar traveling wave solution. To distinguish it from the usual traveling wave solutions, we call it a semi-wave solution. In particular, if α ∈ (0, π/2) is determined by sin α = κ(*/)κ, then for any finite set of unit vectors (ν<sub>i</sub> : 1 <= <i>i</i> <= <i>m</i>} ⊂ ℝ<sup>n</sup>, there is a Λ-shaped semi-wave with traveling speed κ, with traveling direction -e<sub>n+1</sub = (0, ..., 0, -1) ∈ ℝ<sup>n+1</sup> , and with free boundary given by a hypersurface in ℝ<sup>n+1</sup> of the form</p> <p><i>x</i><sub>n+1</sub> = π(<i>x</i><sub>1</sub>, ..., <i>x</i><sub>n</sub>) = ɸ* (<i>x</i><sub>1</sub>, ..., <i>x</i><sub>n</sub>) + <i>O</i>(1) as |(<i>x</i><sub>1</sub>, ..., <i>x</i><sub>n</sub>)| -> ∞,</p> <p>where</p> <p>ɸ* (<i>x</i><sub>1</sub>, ..., <i>x</i><sub>n</sub>) \ colonequals - [max(1 <= <i>i</i> <= <i>m</i>) ν<sub>i</sub> . (<i>x</i><sub>1</sub>, ..., <i>x</i><sub>n</sub>)] cot α</p> <p>is a solution of the eikonal equation | ∇ ɸ | = cot α on ℝ<sup>n</sup>.</p>en
dc.languageenen
dc.publisherAmerican Mathematical Societyen
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.titleSemi-waves with Lambda-shaped free boundary for nonlinear Stefan problems: Existenceen
dc.typeJournal Articleen
dc.identifier.doi10.1090/proc/15346en
dc.subject.keywordsMathematicsen
dc.subject.keywordsMathematics, Applieden
dc.subject.keywordsFree boundaryen
dc.subject.keywordsStefan problemen
dc.subject.keywordstraveling waveen
dc.subject.keywordsV-shaped fronten
local.contributor.firstnameYihongen
local.contributor.firstnameChangfengen
local.contributor.firstnameKeleien
local.contributor.firstnameMaolinen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage2091en
local.format.endpage2104en
local.identifier.scopusid85103050393en
local.peerreviewedYesen
local.identifier.volume149en
local.identifier.issue5en
local.title.subtitleExistenceen
local.contributor.lastnameDuen
local.contributor.lastnameGuien
local.contributor.lastnameWangen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:yduen
dc.identifier.staffune-id:mzhou6en
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31913en
local.date.onlineversion2021-03-02-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSemi-waves with Lambda-shaped free boundary for nonlinear Stefan problemsen
local.relation.fundingsourcenoteThe research of the second author was partially supported by NSF grants DMS-1601885 and DMS-1901914 and Simons Foundation Award 617072. The research of the third author was supported by NSFC 11871381 and 11631011.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorDu, Yihongen
local.search.authorGui, Changfengen
local.search.authorWang, Keleien
local.search.authorZhou, Maolinen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/ef00cf09-71b2-4ad1-a0ab-e2b23b5a0f4den
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000631285900024en
local.year.available2021-
local.year.published2021-
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ef00cf09-71b2-4ad1-a0ab-e2b23b5a0f4den
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-16T09:49:54.570en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 30, 2024

Page view(s)

1,396
checked on Apr 7, 2024

Download(s)

2
checked on Apr 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.