Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31904
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Wang, Mingxin | en |
dc.contributor.author | Zhao, Meng | en |
dc.date.accessioned | 2021-11-12T00:24:55Z | - |
dc.date.available | 2021-11-12T00:24:55Z | - |
dc.date.issued | 2022-03 | - |
dc.identifier.citation | Discrete and Continuous Dynamical Systems. Series A, 42(3), p. 1127-1162 | en |
dc.identifier.issn | 1553-5231 | en |
dc.identifier.issn | 1078-0947 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31904 | - |
dc.description.abstract | <p>We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by "nonlocal diffusion" instead of "local diffusion". We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in [7], and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several new difficulties, which are overcome by the use of some new techniques.</p> | en |
dc.language | en | en |
dc.publisher | AIMS Press | en |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems. Series A | en |
dc.title | Two species nonlocal diffusion systems with free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3934/dcds.2021149 | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Mingxin | en |
local.contributor.firstname | Meng | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.identifier.runningnumber | 2021149 | en |
local.format.startpage | 1127 | en |
local.format.endpage | 1162 | en |
local.identifier.scopusid | 85117865738 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 42 | en |
local.identifier.issue | 3 | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Zhao | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31904 | en |
local.date.onlineversion | 2021 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Two species nonlocal diffusion systems with free boundaries | en |
local.relation.fundingsourcenote | M. Wang was supported by NSFC Grant 11771110. M. Zhao was supported by NWNU-LKQN2021-16 and a scholarship from the China Scholarship Council. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Du, Yihong | en |
local.search.author | Wang, Mingxin | en |
local.search.author | Zhao, Meng | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000748648600004 | en |
local.year.available | 2021 | en |
local.year.published | 2022 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/ebcb2aab-9be3-457e-965a-611a7b38d501 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-12T13:57:30.133 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.