Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31893
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Li, Fang | en |
dc.contributor.author | Zhou, Maolin | en |
dc.date.accessioned | 2021-11-11T04:20:35Z | - |
dc.date.available | 2021-11-11T04:20:35Z | - |
dc.date.issued | 2021-10 | - |
dc.identifier.citation | Journal de Mathematiques Pures et Appliquees, v.154, p. 30-66 | en |
dc.identifier.issn | 1776-3371 | en |
dc.identifier.issn | 0021-7824 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31893 | - |
dc.description.abstract | <p>In Cao, Du, Li and Li [9], a nonlocal diffusion model with free boundaries extending the local diffusion model of Du and Lin [18] was introduced and studied. For Fisher-KPP type nonlinearities, its long-time dynamical behaviour is shown to follow a spreading-vanishing dichotomy. However, when spreading happens, the question of spreading speed was left open in [9]. In this paper we obtain a rather complete answer to this question. We find a threshold condition on the kernel function such that spreading grows linearly in time exactly when this condition holds, which is achieved by completely solving the associated semi-wave problem that determines this linear speed; when the kernel function violates this condition, we show that accelerated spreading happens.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Masson | en |
dc.relation.ispartof | Journal de Mathematiques Pures et Appliquees | en |
dc.title | Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.matpur.2021.08.008 | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Fang | en |
local.contributor.firstname | Maolin | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.email | mzhou6@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | France | en |
local.format.startpage | 30 | en |
local.format.endpage | 66 | en |
local.identifier.scopusid | 85113394326 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 154 | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Zhou | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.staff | une-id:mzhou6 | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31893 | en |
local.date.onlineversion | 2021-08-16 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries | en |
local.relation.fundingsourcenote | F. Li was partially supported by NSF of China (No. 11971498) and NSF of Guangdong Province (No. 2019A1515011339). M. Zhou was partially supported by National Key R&D Program of China (2020YFA0713300) and Nankai Zhide Foundation. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Du, Yihong | en |
local.search.author | Li, Fang | en |
local.search.author | Zhou, Maolin | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000695816400002 | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/623cb92f-5a97-4c24-b4c8-5247b70b9ac4 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-11T15:35:11.441 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
37
checked on Dec 21, 2024
Page view(s)
1,406
checked on Sep 1, 2024
Download(s)
2
checked on Sep 1, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.