Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31885
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNi, Wenjieen
dc.contributor.authorShi, Junpingen
dc.contributor.authorWang, Mingxinen
dc.date.accessioned2021-11-11T03:17:22Z-
dc.date.available2021-11-11T03:17:22Z-
dc.date.issued2020-08-
dc.identifier.citationCalculus of Variations and Partial Differential Equations, 59(4), p. 1-28en
dc.identifier.issn1432-0835en
dc.identifier.issn0944-2669en
dc.identifier.urihttps://hdl.handle.net/1959.11/31885-
dc.description.abstract<p>A diffusive Lotka-Volterra competition model is considered and the combined effect of spatial dispersal and spatial variations of resource on the population persistence and exclusion is studied. A new Lyapunov functional method and a new integral inequality are developed to prove the global stability of non-constant equilibrium solutions in heterogeneous environment. The general result is applied to show that in a two-species system in which the diffusion coefficients, resource functions and competition rates are all spatially heterogeneous, the positive equilibrium solution is globally asymptotically stable when it exists, and it can also be applied to the system with arbitrary number of species under the assumption of spatially heterogeneous resource distribution, for which the monotone dynamical system theory is not applicable.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofCalculus of Variations and Partial Differential Equationsen
dc.titleGlobal stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition modelen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s00526-020-01794-6en
dc.subject.keywordsGlobal stabilityen
dc.subject.keywordsMathematicsen
dc.subject.keywordsDiffusive Lotka-Volterra competition modelen
dc.subject.keywordsSpatial heterogeneityen
dc.subject.keywordsNon-constant equilibrium solutionsen
dc.subject.keywordsMathematics, Applieden
local.contributor.firstnameWenjieen
local.contributor.firstnameJunpingen
local.contributor.firstnameMingxinen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailwni2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.runningnumber132en
local.format.startpage1en
local.format.endpage28en
local.identifier.scopusid85087988034en
local.peerreviewedYesen
local.identifier.volume59en
local.identifier.issue4en
local.contributor.lastnameNien
local.contributor.lastnameShien
local.contributor.lastnameWangen
dc.identifier.staffune-id:wni2en
local.profile.orcid0000-0002-3147-7296en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31885en
local.date.onlineversion2020-07-14-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGlobal stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition modelen
local.relation.fundingsourcenoteChina Scholarship Council, NSF Grant DMS-1715651, and NSFC Grant 11771110en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorNi, Wenjieen
local.search.authorShi, Junpingen
local.search.authorWang, Mingxinen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000553030600002en
local.year.available2020en
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ff7f72c4-f8a3-4ba7-be22-bc9b1bfe2c60en
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490102 Biological mathematicsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

16
checked on Apr 27, 2024

Page view(s)

1,254
checked on May 12, 2024

Download(s)

2
checked on May 12, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.