Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31885
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ni, Wenjie | en |
dc.contributor.author | Shi, Junping | en |
dc.contributor.author | Wang, Mingxin | en |
dc.date.accessioned | 2021-11-11T03:17:22Z | - |
dc.date.available | 2021-11-11T03:17:22Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.citation | Calculus of Variations and Partial Differential Equations, 59(4), p. 1-28 | en |
dc.identifier.issn | 1432-0835 | en |
dc.identifier.issn | 0944-2669 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31885 | - |
dc.description.abstract | <p>A diffusive Lotka-Volterra competition model is considered and the combined effect of spatial dispersal and spatial variations of resource on the population persistence and exclusion is studied. A new Lyapunov functional method and a new integral inequality are developed to prove the global stability of non-constant equilibrium solutions in heterogeneous environment. The general result is applied to show that in a two-species system in which the diffusion coefficients, resource functions and competition rates are all spatially heterogeneous, the positive equilibrium solution is globally asymptotically stable when it exists, and it can also be applied to the system with arbitrary number of species under the assumption of spatially heterogeneous resource distribution, for which the monotone dynamical system theory is not applicable.</p> | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Calculus of Variations and Partial Differential Equations | en |
dc.title | Global stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition model | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s00526-020-01794-6 | en |
dc.subject.keywords | Global stability | en |
dc.subject.keywords | Mathematics | en |
dc.subject.keywords | Diffusive Lotka-Volterra competition model | en |
dc.subject.keywords | Spatial heterogeneity | en |
dc.subject.keywords | Non-constant equilibrium solutions | en |
dc.subject.keywords | Mathematics, Applied | en |
local.contributor.firstname | Wenjie | en |
local.contributor.firstname | Junping | en |
local.contributor.firstname | Mingxin | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | wni2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Germany | en |
local.identifier.runningnumber | 132 | en |
local.format.startpage | 1 | en |
local.format.endpage | 28 | en |
local.identifier.scopusid | 85087988034 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 59 | en |
local.identifier.issue | 4 | en |
local.contributor.lastname | Ni | en |
local.contributor.lastname | Shi | en |
local.contributor.lastname | Wang | en |
dc.identifier.staff | une-id:wni2 | en |
local.profile.orcid | 0000-0002-3147-7296 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31885 | en |
local.date.onlineversion | 2020-07-14 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Global stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition model | en |
local.relation.fundingsourcenote | China Scholarship Council, NSF Grant DMS-1715651, and NSFC Grant 11771110 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ni, Wenjie | en |
local.search.author | Shi, Junping | en |
local.search.author | Wang, Mingxin | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000553030600002 | en |
local.year.available | 2020 | en |
local.year.published | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/ff7f72c4-f8a3-4ba7-be22-bc9b1bfe2c60 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490102 Biological mathematics | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
16
checked on Apr 27, 2024
Page view(s)
1,254
checked on May 12, 2024
Download(s)
2
checked on May 12, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.