Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31871
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Rong | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2021-11-10T23:11:03Z | - |
dc.date.available | 2021-11-10T23:11:03Z | - |
dc.date.issued | 2021-04 | - |
dc.identifier.citation | Discrete and Continuous Dynamical Systems. Series B, 26(4), p. 2201-2238 | en |
dc.identifier.issn | 1553-524X | en |
dc.identifier.issn | 1531-3492 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31871 | - |
dc.description.abstract | In this paper, we determine the long-time dynamical behaviour of a reaction-diffusion system with free boundaries, which models the spreading of an epidemic whose moving front is represented by the free boundaries. The system reduces to the epidemic model of Capasso and Maddalena [5] when the boundary is fixed, and it reduces to the model of Ahn et al. [1] if diffusion of the infective host population is ignored. We prove a spreading-vanishing dichotomy and determine exactly when each of the alternatives occurs. If the reproduction number R-0 obtained from the corresponding ODE model is no larger than 1, then the epidemic modelled here will vanish, while if R-0 > 1, then the epidemic may vanish or spread depending on its initial size, determined by the dichotomy criteria. Moreover, when spreading happens, we show that the expanding front of the epidemic has an asymptotic spreading speed, which is determined by an associated semi-wave problem. | en |
dc.language | en | en |
dc.publisher | AIMS Press | en |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems. Series B | en |
dc.title | Long-time dynamics of a diffusive epidemic model with free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3934/dcdsb.2020360 | en |
dc.subject.keywords | Reaction-diffusion system | - |
dc.subject.keywords | free boundary | - |
dc.subject.keywords | spreading-vanishing dichotomy | - |
dc.subject.keywords | semi-wave | - |
dc.subject.keywords | spreading speed | - |
dc.subject.keywords | Mathematics, Applied | - |
dc.subject.keywords | Mathematics | - |
dc.subject.keywords | epidemic model | - |
local.contributor.firstname | Rong | - |
local.contributor.firstname | Yihong | - |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | rwang4@myune.edu.au | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | - |
local.record.institution | University of New England | - |
local.publisher.place | United States of America | en |
local.format.startpage | 2201 | en |
local.format.endpage | 2238 | en |
local.identifier.scopusid | 85101385715 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 26 | en |
local.identifier.issue | 4 | en |
local.contributor.lastname | Wang | - |
local.contributor.lastname | Du | - |
dc.identifier.staff | une-id:rwang4 | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31871 | - |
local.date.onlineversion | 2020-12 | - |
dc.identifier.academiclevel | Student | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Long-time dynamics of a diffusive epidemic model with free boundaries | - |
local.relation.fundingsourcenote | This work was supported by the Australian Research Council and a PhD scholarship of the University of New England. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | - |
local.search.author | Wang, Rong | - |
local.search.author | Du, Yihong | - |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000616120400024 | en |
local.year.available | 2020 | - |
local.year.published | 2021 | - |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/e9305b03-ec62-43bc-ba72-847183ecff97 | - |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490102 Biological mathematics | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-11T15:35:39.152 | - |
local.codeupdate.eperson | ydu@une.edu.au | - |
local.codeupdate.finalised | true | - |
local.original.for2020 | 490102 Biological mathematics | - |
local.original.for2020 | 490410 Partial differential equations | - |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | - |
local.profile.affiliationtype | Unknown | en |
local.profile.affiliationtype | Unknown | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
13
checked on Apr 27, 2024
Page view(s)
1,472
checked on Apr 28, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.