Zappa-Szép product groupoids and C*-blends

Title
Zappa-Szép product groupoids and C*-blends
Publication Date
2017-06
Author(s)
Brownlowe, Nathan
Pask, David
Ramagge, Jacqui
Robertson, David
( author )
OrcID: https://orcid.org/0000-0002-0425-4775
Email: drober54@une.edu.au
UNE Id une-id:drober54
Whittaker, Michael F
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Springer New York LLC
Place of publication
United States of America
DOI
10.1007/s00233-016-9775-z
UNE publication id
une:1959.11/31870
Abstract

We study the external and internal Zappa-Szép product of topological groupoids.We show that under natural continuity assumptions the Zappa-Szép product groupoid is étale if and only if the individual groupoids are étale. In our main result we show that the C*-algebra of a locally compact Hausdorff étale Zappa-Szép product groupoid is a C*-blend, in the sense of Exel, of the individual groupoid C*-algebras. We finish with some examples, including groupoids built from ⁎-commuting endomorphisms, and skew product groupoids.

Link
Citation
Semigroup Forum, 94(3), p. 500-519
ISSN
1432-2137
0037-1912
Start page
500
End page
519

Files:

NameSizeformatDescriptionLink
closedpublished/ZappaRobertson2017JournalArticle.pdf 498.341 KB application/pdf Published version View document