Author(s) |
Rennie, Adam
Robertson, David
Sims, Aidan
|
Publication Date |
2017-02-23
|
Abstract |
<p>We show that if <i>G</i> is a second countable locally compact Hausdorff étale groupoid carrying a suitable cocycle <i>c</i>:<i>G</i> → ℤ, then the reduced <i>C</i>*-algebra of <i>G</i> can be realised naturally as the Cuntz-Pimsner algebra of a correspondence over the reduced <i>C</i>*-algebra of the kernel <i>G</i><sub>0</sub> of <i>c</i>. If the full and reduced <i>C</i>*-algebras of <i>G</i><sub>0</sub> coincide, we deduce that the full and reduced <i>C</i>*-algebras of <i>G</i> coincide. We obtain a six-term exact sequence describing the <i>K</i>-theory of <i>C</i>*<sub>r</sub> (<i>G</i>) in terms of that of <i>C</i>*<sub>r</sub> (<i>G</i><sub>0</sub>).</p>
|
Citation |
Mathematica Scandinavica, 120(1), p. 115-123
|
ISSN |
1903-1807
0025-5521
|
Link | |
Publisher |
Aarhus Universitet, Mathematica Scandinavica
|
Title |
Groupoid algebras as Cuntz-Pimsner algebras
|
Type of document |
Journal Article
|
Entity Type |
Publication
|
Name | Size | format | Description | Link |
---|