Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31824
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alekseevsky, Dmitri V | en |
dc.contributor.author | Ganji, Masoud | en |
dc.contributor.author | Schmalz, Gerd | en |
dc.contributor.author | Spiro, Andrea | en |
dc.date.accessioned | 2021-11-08T23:36:17Z | - |
dc.date.available | 2021-11-08T23:36:17Z | - |
dc.date.issued | 2021-04 | - |
dc.identifier.citation | Differential Geometry and its Applications, v.75, p. 1-32 | en |
dc.identifier.issn | 1872-6984 | en |
dc.identifier.issn | 0926-2245 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31824 | - |
dc.description.abstract | <p>We study Lorentzian manifolds (<i>M, g</i>) of dimension <i>n</i> ≥4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space <i>S</i> = <i>M</i>/{exp<i>t</i>p}is a smooth manifold. If <i>n</i> =2<i>k</i>, the quotient <i>S</i> = <i>M</i>/{exp<i>t</i>p} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kähler manifold of real dimension 2<i>k</i> - 2. Going backwards through this line of ideas, for any quantisable Kähler manifold with associated Sasaki manifold <i>S</i>, we give the local description of all Lorentzian metrics <i>g</i> on the total spaces <i>M</i> of <i>A</i>-bundles π : <i>M</i> → <i>S</i>, <i>A</i> = <i>S</i><sup>1</sup>, ℝ, such that the generator of the group action is a maximally twisting shearfree <i>g</i>-null vector field p. We also prove that on any such Lorentzian manifold (<i>M, g</i>)there exists a non-trivial generalised electromagnetic plane wave having p as propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle <i>M</i> = ℝ × <i>S</i> for any prescribed value of the Einstein constant. If dim <i>M</i> = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV, North-Holland | en |
dc.relation.ispartof | Differential Geometry and its Applications | en |
dc.title | Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.difgeo.2021.101724 | en |
local.contributor.firstname | Dmitri V | en |
local.contributor.firstname | Masoud | en |
local.contributor.firstname | Gerd | en |
local.contributor.firstname | Andrea | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | mganjia2@une.edu.au | en |
local.profile.email | schmalz@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP130103485 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Netherlands | en |
local.identifier.runningnumber | 101724 | en |
local.format.startpage | 1 | en |
local.format.endpage | 32 | en |
local.identifier.scopusid | 85100743702 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 75 | en |
local.contributor.lastname | Alekseevsky | en |
local.contributor.lastname | Ganji | en |
local.contributor.lastname | Schmalz | en |
local.contributor.lastname | Spiro | en |
dc.identifier.staff | une-id:mganjia2 | en |
dc.identifier.staff | une-id:schmalz | en |
local.profile.orcid | 0000-0002-6141-9329 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31824 | en |
local.date.onlineversion | 2021-02-15 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry | en |
local.relation.fundingsourcenote | Czech Science Foundation (Grant No. grant no. 18-00496S) | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP130103485 | en |
local.search.author | Alekseevsky, Dmitri V | en |
local.search.author | Ganji, Masoud | en |
local.search.author | Schmalz, Gerd | en |
local.search.author | Spiro, Andrea | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000632451300011 | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/47a73368-9a8e-4ec9-854e-7129d223163b | en |
local.subject.for2020 | 490402 Algebraic and differential geometry | en |
local.subject.for2020 | 490204 Mathematical aspects of general relativity | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
2
checked on Jun 8, 2024
Page view(s)
1,116
checked on Aug 20, 2023
Download(s)
2
checked on Aug 20, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.