Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlekseevsky, Dmitri Ven
dc.contributor.authorGanji, Masouden
dc.contributor.authorSchmalz, Gerden
dc.contributor.authorSpiro, Andreaen
dc.date.accessioned2021-11-08T23:36:17Z-
dc.date.available2021-11-08T23:36:17Z-
dc.date.issued2021-04-
dc.identifier.citationDifferential Geometry and its Applications, v.75, p. 1-32en
dc.identifier.issn1872-6984en
dc.identifier.issn0926-2245en
dc.identifier.urihttps://hdl.handle.net/1959.11/31824-
dc.description.abstract<p>We study Lorentzian manifolds (<i>M, g</i>) of dimension <i>n</i> ≥4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space <i>S</i> = <i>M</i>/{exp<i>t</i>p}is a smooth manifold. If <i>n</i> =2<i>k</i>, the quotient <i>S</i> = <i>M</i>/{exp<i>t</i>p} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kähler manifold of real dimension 2<i>k</i> - 2. Going backwards through this line of ideas, for any quantisable Kähler manifold with associated Sasaki manifold <i>S</i>, we give the local description of all Lorentzian metrics <i>g</i> on the total spaces <i>M</i> of <i>A</i>-bundles π : <i>M</i> → <i>S</i>, <i>A</i> = <i>S</i><sup>1</sup>, ℝ, such that the generator of the group action is a maximally twisting shearfree <i>g</i>-null vector field p. We also prove that on any such Lorentzian manifold (<i>M, g</i>)there exists a non-trivial generalised electromagnetic plane wave having p as propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle <i>M</i> = ℝ × <i>S</i> for any prescribed value of the Einstein constant. If dim <i>M</i> = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics.</p>en
dc.languageenen
dc.publisherElsevier BV, North-Hollanden
dc.relation.ispartofDifferential Geometry and its Applicationsen
dc.titleLorentzian manifolds with shearfree congruences and Kähler-Sasaki geometryen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.difgeo.2021.101724en
local.contributor.firstnameDmitri Ven
local.contributor.firstnameMasouden
local.contributor.firstnameGerden
local.contributor.firstnameAndreaen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmganjia2@une.edu.auen
local.profile.emailschmalz@une.edu.auen
local.output.categoryC1en
local.grant.numberDP130103485en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.identifier.runningnumber101724en
local.format.startpage1en
local.format.endpage32en
local.identifier.scopusid85100743702en
local.peerreviewedYesen
local.identifier.volume75en
local.contributor.lastnameAlekseevskyen
local.contributor.lastnameGanjien
local.contributor.lastnameSchmalzen
local.contributor.lastnameSpiroen
dc.identifier.staffune-id:mganjia2en
dc.identifier.staffune-id:schmalzen
local.profile.orcid0000-0002-6141-9329en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31824en
local.date.onlineversion2021-02-15-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLorentzian manifolds with shearfree congruences and Kähler-Sasaki geometryen
local.relation.fundingsourcenoteCzech Science Foundation (Grant No. grant no. 18-00496S)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP130103485en
local.search.authorAlekseevsky, Dmitri Ven
local.search.authorGanji, Masouden
local.search.authorSchmalz, Gerden
local.search.authorSpiro, Andreaen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000632451300011en
local.year.available2021en
local.year.published2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/47a73368-9a8e-4ec9-854e-7129d223163ben
local.subject.for2020490402 Algebraic and differential geometryen
local.subject.for2020490204 Mathematical aspects of general relativityen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

2
checked on Jun 8, 2024

Page view(s)

1,116
checked on Aug 20, 2023

Download(s)

2
checked on Aug 20, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.