Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31822
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhao, Meng | en |
dc.contributor.author | Li, Wantong | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2021-11-08T23:19:33Z | - |
dc.date.available | 2021-11-08T23:19:33Z | - |
dc.date.issued | 2020-09 | - |
dc.identifier.citation | Communications on Pure and Applied Analysis, 19(9), p. 4599-4620 | en |
dc.identifier.issn | 1553-5258 | en |
dc.identifier.issn | 1534-0392 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31822 | - |
dc.description.abstract | <p>In this paper, we examine an epidemic model which is described by a system of two equations with nonlocal diffusion on the equation for the infectious agents <i>u</i>, while no dispersal is assumed in the other equation for the infective humans <i>v</i>. The underlying spatial region [<i>g</i> (<i>t</i>) , <i>h</i>(<i>t</i>)] (i.e., the infected region) is assumed to change with time, governed by a set of free boundary conditions. In the recent work [33] such a model was considered where the growth rate of <i>u</i> due to the contribution from <i>v</i> is given by <i>cv</i> for some positive constant <i>c</i>. Here this term is replaced by a nonlocal reaction function of <i>v</i> in the form <i>c</i> ∫(<i>h</i>(<i>t</i>))/(<i>g</i>(<i>t</i>)) <i>K</i>(<i>x - y</i>)<i>v</i>(<i>t, y</i>)<i>dy</i> with a suitable kernel function <i>K</i>, to represent g(t) the nonlocal effect of <i>v</i> on the growth of <i>u</i>. We first show that this problem has a unique solution for all <i>t</i> > 0, and then we show that its longtime behaviour is determined by a spreading-vanishing dichotomy, which indicates that the long-time dynamics of the model is not vastly altered by this change of the term <i>cv</i>. We also obtain sharp criteria for spreading and vanishing, which reveal that changes do occur in these criteria from the earlier model in [33] where the term <i>cv</i> was used; in particular, small nonlocal dispersal rate of <i>u</i> alone no longer guarantees successful spreading of the disease as in the model of [33].</p> | en |
dc.language | en | en |
dc.publisher | Aims Press | en |
dc.relation.ispartof | Communications on Pure and Applied Analysis | en |
dc.title | The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3934/cpaa.2020208 | en |
dc.subject.keywords | spreading and vanishing | en |
dc.subject.keywords | Epidemic model | en |
dc.subject.keywords | nonlocal diffusion | en |
dc.subject.keywords | nonlocal reaction | en |
dc.subject.keywords | free boundary | en |
dc.subject.keywords | Mathematics, Applied | en |
dc.subject.keywords | Mathematics | en |
local.contributor.firstname | Meng | en |
local.contributor.firstname | Wantong | en |
local.contributor.firstname | Yihong | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 4599 | en |
local.format.endpage | 4620 | en |
local.identifier.scopusid | 85090797049 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 19 | en |
local.identifier.issue | 9 | en |
local.contributor.lastname | Zhao | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Du | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31822 | en |
local.date.onlineversion | 2020-06 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries | en |
local.relation.fundingsourcenote | M. Zhao was supported by a scholarship from the China Scholarship Council (201806180022), W.T. Li was supported by NSF of China (11731005, 11671180). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | Zhao, Meng | en |
local.search.author | Li, Wantong | en |
local.search.author | Du, Yihong | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000542178000017 | en |
local.year.available | 2020 | en |
local.year.published | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/896e9fcb-0f9d-4ac2-b58a-06948293bf26 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490102 Biological mathematics | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-09T10:23:32.957 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490102 Biological mathematics | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
14
checked on May 18, 2024
Page view(s)
1,320
checked on May 19, 2024
Download(s)
2
checked on May 19, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.