Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Mengen
dc.contributor.authorLi, Wantongen
dc.contributor.authorDu, Yihongen
dc.date.accessioned2021-11-08T23:19:33Z-
dc.date.available2021-11-08T23:19:33Z-
dc.date.issued2020-09-
dc.identifier.citationCommunications on Pure and Applied Analysis, 19(9), p. 4599-4620en
dc.identifier.issn1553-5258en
dc.identifier.issn1534-0392en
dc.identifier.urihttps://hdl.handle.net/1959.11/31822-
dc.description.abstract<p>In this paper, we examine an epidemic model which is described by a system of two equations with nonlocal diffusion on the equation for the infectious agents <i>u</i>, while no dispersal is assumed in the other equation for the infective humans <i>v</i>. The underlying spatial region [<i>g</i> (<i>t</i>) , <i>h</i>(<i>t</i>)] (i.e., the infected region) is assumed to change with time, governed by a set of free boundary conditions. In the recent work [33] such a model was considered where the growth rate of <i>u</i> due to the contribution from <i>v</i> is given by <i>cv</i> for some positive constant <i>c</i>. Here this term is replaced by a nonlocal reaction function of <i>v</i> in the form <i>c</i> ∫(<i>h</i>(<i>t</i>))/(<i>g</i>(<i>t</i>)) <i>K</i>(<i>x - y</i>)<i>v</i>(<i>t, y</i>)<i>dy</i> with a suitable kernel function <i>K</i>, to represent g(t) the nonlocal effect of <i>v</i> on the growth of <i>u</i>. We first show that this problem has a unique solution for all <i>t</i> > 0, and then we show that its longtime behaviour is determined by a spreading-vanishing dichotomy, which indicates that the long-time dynamics of the model is not vastly altered by this change of the term <i>cv</i>. We also obtain sharp criteria for spreading and vanishing, which reveal that changes do occur in these criteria from the earlier model in [33] where the term <i>cv</i> was used; in particular, small nonlocal dispersal rate of <i>u</i> alone no longer guarantees successful spreading of the disease as in the model of [33].</p>en
dc.languageenen
dc.publisherAims Pressen
dc.relation.ispartofCommunications on Pure and Applied Analysisen
dc.titleThe effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundariesen
dc.typeJournal Articleen
dc.identifier.doi10.3934/cpaa.2020208en
dc.subject.keywordsspreading and vanishingen
dc.subject.keywordsEpidemic modelen
dc.subject.keywordsnonlocal diffusionen
dc.subject.keywordsnonlocal reactionen
dc.subject.keywordsfree boundaryen
dc.subject.keywordsMathematics, Applieden
dc.subject.keywordsMathematicsen
local.contributor.firstnameMengen
local.contributor.firstnameWantongen
local.contributor.firstnameYihongen
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage4599en
local.format.endpage4620en
local.identifier.scopusid85090797049en
local.peerreviewedYesen
local.identifier.volume19en
local.identifier.issue9en
local.contributor.lastnameZhaoen
local.contributor.lastnameLien
local.contributor.lastnameDuen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31822en
local.date.onlineversion2020-06-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundariesen
local.relation.fundingsourcenoteM. Zhao was supported by a scholarship from the China Scholarship Council (201806180022), W.T. Li was supported by NSF of China (11731005, 11671180).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorZhao, Mengen
local.search.authorLi, Wantongen
local.search.authorDu, Yihongen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000542178000017en
local.year.available2020en
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/896e9fcb-0f9d-4ac2-b58a-06948293bf26en
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490102 Biological mathematicsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-09T10:23:32.957en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490102 Biological mathematicsen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

14
checked on May 18, 2024

Page view(s)

1,320
checked on May 19, 2024

Download(s)

2
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.