Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamruzzaman, Khanen
dc.contributor.authorLiu, Shuangen
dc.contributor.authorSchaerf, Timothy Men
dc.contributor.authorDu, Yihongen
dc.date.accessioned2021-11-08T22:08:44Z-
dc.date.available2021-11-08T22:08:44Z-
dc.date.issued2021-09-
dc.identifier.citationJournal of Mathematical Biology, 83(3), p. 1-23en
dc.identifier.issn1432-1416en
dc.identifier.issn0303-6812en
dc.identifier.urihttps://hdl.handle.net/1959.11/31815-
dc.description.abstract<p>What will happen when two invasive species are competing and invading the environment at the same time? In this paper, we try to find all the possible scenarios in such a situation based on the diffusive Lotka-Volterra competition system with free boundaries. In a recent work, Du and Wu (Calc Var Partial Differ Equ, 57(2):52, 2018) considered a weak-strong competition case of this model (with spherical symmetry) and theoretically proved the existence of a "chase-and-run coexistence" phenomenon, for certain parameter ranges when the initial functions are chosen properly. Here we use a numerical approach to extend the theoretical research of Du and Wu (Calc Var Partial Differ Equ, 57(2):52, 2018) in several directions. Firstly, we examine how the longtime dynamics of the model changes as the initial functions are varied, and the simulation results suggest that there are four possible longtime profiles of the dynamics, with the chase-and-run coexistence the only possible profile when both species invade successfully. Secondly, we show through numerical experiments that the basic features of the model appear to be retained when the environment is perturbed by periodic variation in time. Thirdly, our numerical analysis suggests that in two space dimensions the population range and the spatial population distribution of the successful invader tend to become more and more circular as time increases no matter what geometrical shape the initial population range possesses. Our numerical simulations cover the one space dimension case, and two space dimension case with or without spherical symmetry. The numerical methods here are based on that of Liu et al. (Mathematics, 6(5):72, 2018, Int J Comput Math, 97(5): 959-979, 2020). In the two space dimension case without radial symmetry, the level set method is used, while the front tracking method is used for the remaining cases. We hope the numerical observations in this paper can provide further insights to the biological invasion problem, and also to future theoretical investigations. More importantly, we hope the numerical analysis may reach more biologically oriented experts and inspire applications of some refined versions of the model tailored to specific real world biological invasion problems.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofJournal of Mathematical Biologyen
dc.titleInvasive behaviour under competition via a free boundary model: a numerical approachen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s00285-021-01641-yen
dc.identifier.pmid34351535en
local.contributor.firstnameKhanen
local.contributor.firstnameShuangen
local.contributor.firstnameTimothy Men
local.contributor.firstnameYihongen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailkkamruzz@une.edu.auen
local.profile.emailtschaerf@une.edu.auen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.runningnumber23en
local.format.startpage1en
local.format.endpage23en
local.identifier.scopusid85112004171en
local.peerreviewedYesen
local.identifier.volume83en
local.identifier.issue3en
local.title.subtitlea numerical approachen
local.contributor.lastnameKamruzzamanen
local.contributor.lastnameLiuen
local.contributor.lastnameSchaerfen
local.contributor.lastnameDuen
dc.identifier.staffune-id:kkamruzzen
dc.identifier.staffune-id:tschaerfen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0001-6642-8374en
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31815en
local.date.onlineversion2021-08-05-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleInvasive behaviour under competition via a free boundary modelen
local.relation.fundingsourcenoteThis work was partially supported by the Australian Research Councilen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKamruzzaman, Khanen
local.search.authorLiu, Shuangen
local.search.authorSchaerf, Timothy Men
local.search.authorDu, Yihongen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000681766700001en
local.year.available2021en
local.year.published2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1beb1d30-78ae-4dfb-baa8-2dee2e6f7494en
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490102 Biological mathematicsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-09T10:24:05.148en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.for2020490102 Biological mathematicsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
closedpublished/InvasiveKamruzzamanSchaerfDu2021JournalArticle.pdf8.56 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 14, 2024

Page view(s)

1,288
checked on Mar 3, 2024

Download(s)

106
checked on Mar 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.