Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/31760
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peng, Rui | en |
dc.contributor.author | Zhang, Guanghui | en |
dc.contributor.author | Zhou, Maolin | en |
dc.date.accessioned | 2021-10-27T02:25:17Z | - |
dc.date.available | 2021-10-27T02:25:17Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | SIAM Journal on Mathematical Analysis, 51(6), p. 4724-4753 | en |
dc.identifier.issn | 1095-7154 | en |
dc.identifier.issn | 0036-1410 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/31760 | - |
dc.description.abstract | <p>In this article, we are concerned with the following eigenvalue problem of a second order linear elliptic operator: -<i>D</i>∆∅ - 2α∇<i>m</i>(<i>x</i>) · ∇∅ + <i>V</i>(<i>x</i>)∅ = λ ∅ in Ω , complemented by a general boundary condition, including Dirichlet boundary condition and Robin boundary condition, ∂∅ ⁄ ∂<i>n</i> + <i>β</i> (<i>x</i>)∅ = 0 on ∂ Ω , where <i>β</i> ∈ <i>C</i>(∂ Ω) is allowed to be positive, sign-changing, or negative, and <i>n</i>(<i>x</i>) is the unit exterior normal to ∂ Ω at <i>x</i>. The domain Ω ⊂ ℝ<sup><i>N</i></sup> is bounded and smooth, the constants <i>D</i> > 0 and α > 0 are, respectively, the diffusive and advection coefficients, and <i>m</i> ∈ <i>C</i><sup>2</sup>(Ω), <i>V</i> ∈ <i>C</i>(Ω) are given functions. We aim to investigate the asymptotic behavior of the principal eigenvalue of the above eigenvalue problem as the diffusive coefficient <i>D</i> → 0 or <i>D</i> → ∞ . Our results, together with those of [X. F. Chen and Y. Lou, <i>Indiana Univ. Math. J.</i>, 61 (2012), pp. 45-80; A. Devinatz, R. Ellis, and A. Friedman, <i>Indiana Univ. Math. J.</i>, 23 (1973/74), pp. 991-1011; and A. Friedman, <i>Indiana U. Math. J.</i>, 22 (1973), pp. 1005-1015] where the Neumann boundary case (i.e., <i>β</i> = 0 on ∂ Ω ) and Dirichlet boundary case were studied, reveal the important effect of advection and boundary conditions on the asymptotic behavior of the principal eigenvalue.</p> | en |
dc.language | en | en |
dc.publisher | Society for Industrial and Applied Mathematics | en |
dc.relation.ispartof | SIAM Journal on Mathematical Analysis | en |
dc.title | Asymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficient | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1137/18M1217577 | en |
local.contributor.firstname | Rui | en |
local.contributor.firstname | Guanghui | en |
local.contributor.firstname | Maolin | en |
local.relation.isfundedby | ARC | en |
local.subject.for2008 | 010299 Applied Mathematics not elsewhere classified | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | mzhou6@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DE170101410 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 4724 | en |
local.format.endpage | 4753 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 51 | en |
local.identifier.issue | 6 | en |
local.contributor.lastname | Peng | en |
local.contributor.lastname | Zhang | en |
local.contributor.lastname | Zhou | en |
dc.identifier.staff | une-id:mzhou6 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/31760 | en |
local.date.onlineversion | 2019-11-21 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Asymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficient | en |
local.relation.fundingsourcenote | The work of the first author was supported by NSF of China (11671175, 11571200), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015A013) and Qing Lan Project of Jiangsu Province. The work of the second author was supported by NSF of China (11501225) and the Fundamental Research Funds for the Central Universities (5003011008). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DE170101410 | en |
local.search.author | Peng, Rui | en |
local.search.author | Zhang, Guanghui | en |
local.search.author | Zhou, Maolin | en |
local.istranslated | No | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000546893900016 | en |
local.year.available | 2019 | - |
local.year.published | 2019 | - |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/130dd128-fe15-4b2c-87a7-48b218cef568 | en |
local.subject.for2020 | 490199 Applied mathematics not elsewhere classified | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
14
checked on Dec 7, 2024
Page view(s)
982
checked on Nov 5, 2023
Download(s)
2
checked on Nov 5, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.