Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/31760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Ruien
dc.contributor.authorZhang, Guanghuien
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2021-10-27T02:25:17Z-
dc.date.available2021-10-27T02:25:17Z-
dc.date.issued2019-
dc.identifier.citationSIAM Journal on Mathematical Analysis, 51(6), p. 4724-4753en
dc.identifier.issn1095-7154en
dc.identifier.issn0036-1410en
dc.identifier.urihttps://hdl.handle.net/1959.11/31760-
dc.description.abstract<p>In this article, we are concerned with the following eigenvalue problem of a second order linear elliptic operator: -<i>D</i>∆∅ - 2α∇<i>m</i>(<i>x</i>) · ∇∅ + <i>V</i>(<i>x</i>)∅ = λ ∅ in Ω , complemented by a general boundary condition, including Dirichlet boundary condition and Robin boundary condition, ∂∅ ⁄ ∂<i>n</i> + <i>β</i> (<i>x</i>)∅ = 0 on ∂ Ω , where <i>β</i> ∈ <i>C</i>(∂ Ω) is allowed to be positive, sign-changing, or negative, and <i>n</i>(<i>x</i>) is the unit exterior normal to ∂ Ω at <i>x</i>. The domain Ω ⊂ ℝ<sup><i>N</i></sup> is bounded and smooth, the constants <i>D</i> > 0 and α > 0 are, respectively, the diffusive and advection coefficients, and <i>m</i> ∈ <i>C</i><sup>2</sup>(Ω), <i>V</i> ∈ <i>C</i>(Ω) are given functions. We aim to investigate the asymptotic behavior of the principal eigenvalue of the above eigenvalue problem as the diffusive coefficient <i>D</i> → 0 or <i>D</i> → ∞ . Our results, together with those of [X. F. Chen and Y. Lou, <i>Indiana Univ. Math. J.</i>, 61 (2012), pp. 45-80; A. Devinatz, R. Ellis, and A. Friedman, <i>Indiana Univ. Math. J.</i>, 23 (1973/74), pp. 991-1011; and A. Friedman, <i>Indiana U. Math. J.</i>, 22 (1973), pp. 1005-1015] where the Neumann boundary case (i.e., <i>β</i> = 0 on ∂ Ω ) and Dirichlet boundary case were studied, reveal the important effect of advection and boundary conditions on the asymptotic behavior of the principal eigenvalue.</p>en
dc.languageenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.ispartofSIAM Journal on Mathematical Analysisen
dc.titleAsymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficienten
dc.typeJournal Articleen
dc.identifier.doi10.1137/18M1217577en
local.contributor.firstnameRuien
local.contributor.firstnameGuanghuien
local.contributor.firstnameMaolinen
local.relation.isfundedbyARCen
local.subject.for2008010299 Applied Mathematics not elsewhere classifieden
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.grant.numberDE170101410en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage4724en
local.format.endpage4753en
local.peerreviewedYesen
local.identifier.volume51en
local.identifier.issue6en
local.contributor.lastnamePengen
local.contributor.lastnameZhangen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:mzhou6en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/31760en
local.date.onlineversion2019-11-21-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAsymptotic behavior of the principal eigenvalue of a linear second order elliptic operator with small/large diffusion coefficienten
local.relation.fundingsourcenoteThe work of the first author was supported by NSF of China (11671175, 11571200), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015A013) and Qing Lan Project of Jiangsu Province. The work of the second author was supported by NSF of China (11501225) and the Fundamental Research Funds for the Central Universities (5003011008).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DE170101410en
local.search.authorPeng, Ruien
local.search.authorZhang, Guanghuien
local.search.authorZhou, Maolinen
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000546893900016en
local.year.available2019-
local.year.published2019-
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/130dd128-fe15-4b2c-87a7-48b218cef568en
local.subject.for2020490199 Applied mathematics not elsewhere classifieden
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

14
checked on Dec 7, 2024

Page view(s)

982
checked on Nov 5, 2023

Download(s)

2
checked on Nov 5, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.