Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/3146
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorVan Der Werf, Julius Hermanen
dc.date.accessioned2009-11-18T15:34:00Z-
dc.date.issued2006-
dc.identifier.citationGenetics Selection Evolution, 38(1), p. 25-43en
dc.identifier.issn1297-9686en
dc.identifier.issn0999-193Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/3146-
dc.description.abstractVariance component (VC) approaches based on restricted maximum likelihood (REML) have been used as an attractive method for positioning of quantitative trait loci (QTL). Linkage disequilibrium (LD) information can be easily implemented in the covariance structure among QTL effects (e.g. genotype relationship matrix) and mapping resolution appears to be high. Because of the use of LD information, the covariance structure becomes much richer and denser compared to the use of linkage information alone. This makes an average information (AI) REML algorithm based on mixed model equations and sparse matrix techniques less useful. In addition, (near-) singularity problems often occur with high marker densities, which is common in fine-mapping, causing numerical problems in AIREML based on mixed model equations. The present study investigates the direct use of the variance covariance matrix of all observations in AIREML for LD mapping with a general complex pedigree. The method presented is more efficient than the usual approach based on mixed model equations and robust to numerical problems caused by near-singularity due to closely linked markers. It is also feasible to fit multiple QTL simultaneously in the proposed method whereas this would drastically increase computing time when using mixed model equation-based methods.en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGenetics Selection Evolutionen
dc.titleAn efficient variance component approach implementing an average information REML suitable for combined LD and linkage mapping with a general complex pedigreeen
dc.typeJournal Articleen
dc.identifier.doi10.1051/gse:2005025en
dc.subject.keywordsQuantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.contributor.firstnameSang Hongen
local.contributor.firstnameJulius Hermanen
local.subject.for2008060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.subject.seo2008830310 Sheep - Meaten
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordpes:4322en
local.publisher.placeUnited Kingdomen
local.format.startpage25en
local.format.endpage43en
local.identifier.scopusid30444435351en
local.peerreviewedYesen
local.identifier.volume38en
local.identifier.issue1en
local.contributor.lastnameLeeen
local.contributor.lastnameVan Der Werfen
dc.identifier.staffune-id:slee38en
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:3229en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn efficient variance component approach implementing an average information REML suitable for combined LD and linkage mapping with a general complex pedigreeen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLee, Sang Hongen
local.search.authorVan Der Werf, Julius Hermanen
local.uneassociationUnknownen
local.identifier.wosid000234153000003en
local.year.published2006en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

46
checked on May 27, 2023

Page view(s)

1,208
checked on Jun 4, 2023

Download(s)

2
checked on Jun 4, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.