The effects of heat on the physical and spectral properties of bloodstains at arson scenes

Title
The effects of heat on the physical and spectral properties of bloodstains at arson scenes
Publication Date
2021-08
Author(s)
Bastide, Belinda
Porter, Glenn
( author )
OrcID: https://orcid.org/0000-0002-8052-2938
Email: gporter4@une.edu.au
UNE Id une-id:gporter4
Renshaw, Adrian
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Elsevier Ireland Ltd
Place of publication
Ireland
DOI
10.1016/j.forsciint.2021.110891
UNE publication id
une:1959.11/31373
Abstract
This study examines the spectral characteristics of blood after being exposed to intense heat within a structural fire. Fire and intense heat have previously been understood to destroy or chemically change bloodstain evidence so that traditional forensic science recovery techniques are rendered ineffectual. Understanding the effects of the denaturation process and physical changes that occur to blood when exposed to heat may develop innovative forensic investigation methods, including the use of reflected infrared photography to enhance the recording of bloodstains. This research revealed that the denaturation of blood, specifically changes to the haemoglobin state from oxyhaemoglobin to methaemoglobin, resulted in the heat affected blood having a more optimal spectral target range within the infrared region when exposed to heat> 200 °C. It was observed both qualitatively and quantitatively using spectrophotometry, that there is a relationship between the appearance, viscosity and infrared absorption properties of blood when exposed to different temperatures as experienced in fire. This result indicated the increased potential for reflected infrared photography to be utilised as an effective tool for crime scene evidence recovery of bloodstains from arson scenes involving fire.
Link
Citation
Forensic Science International, v.325, p. 1-6
ISSN
1872-6283
0379-0738
Start page
1
End page
6

Files:

NameSizeformatDescriptionLink