Hibernation by tree-roosting bats

Title
Hibernation by tree-roosting bats
Publication Date
2008
Author(s)
Turbill, Christopher
Geiser, Fritz
( author )
OrcID: https://orcid.org/0000-0001-7621-5049
Email: fgeiser@une.edu.au
UNE Id une-id:fgeiser
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Springer
Place of publication
Germany
DOI
10.1007/s00360-007-0249-1
UNE publication id
une:3183
Abstract
In summer, long-eared bats ('Nyctophilus' spp.) roost under bark and in tree cavities, where they appear to benefit from diurnal heating of roosts. In contrast, hibernation is thought to require a cool stable temperature, suggesting they should prefer thermally insulated tree cavities during winter. To test this prediction, we quantified the winter thermoregulatory physiology and ecology of hibernating tree-roosting bats, 'Nyctophilus geoffroyi' and 'N. gouldi' in the field. Surprisingly, bats in winter continued to roost under exfoliating bark (65%) on the northern, sunny side of trees and in shallow tree cavities (35%). Despite passive re-warming of torpid bats by 10–20°C per day, torpor bouts lasted up to 15 days, although shorter bouts were also common. Arousals occurred more frequently and subsequent activity lasted longer on warmer nights, suggesting occasional winter foraging. We show that, because periodic arousals coincide with maximum roost temperatures, when costs of rewarming and normothermic thermoregulation are minimal, exposure to a daily temperature cycle could largely reduce energy expenditure during hibernation. Our study provides further evidence that models of torpor patterns and energy expenditure from hibernators in cold temperate climates are not directly applicable in milder climates, where prolonged torpor can be interspersed with more frequent arousals and occasional foraging.
Link
Citation
Journal of Comparative Physiology B, 178(5), p. 597-605
ISSN
1432-136X
0174-1578
Start page
597
End page
605

Files:

NameSizeformatDescriptionLink