Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/30271
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brinkhoff, James | en |
dc.contributor.author | Robson, Andrew J | en |
dc.date.accessioned | 2021-03-25T03:30:44Z | - |
dc.date.available | 2021-03-25T03:30:44Z | - |
dc.date.issued | 2021-06-15 | - |
dc.identifier.citation | Agricultural and Forest Meteorology, v.303, p. 1-13 | en |
dc.identifier.issn | 1873-2240 | en |
dc.identifier.issn | 0168-1923 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/30271 | - |
dc.description.abstract | Early crop yield forecasts provide valuable information for growers and industry to base decisions on. This work considers early forecasting of macadamia nut yield at the individual orchard block level with input variables derived from spatio-temporal datasets including remote sensing, weather and elevation. Yield data from 2012–2019, for 101 blocks belonging to 10 orchards, was obtained. We forecast yield on each test year from 2014–2019 using models trained on data from years prior to the test year. Forecasts are generated in January, for the coming harvest in March–September. A linear model using ridge regularized regression produced consistently good predictions compared with other machine learning algorithms including lasso, support vector regression and random forest. Adding meteorological variables offered little improvement over using only remote sensing variables. The 2019 forecast root mean square error at the block level was 0.8 t/ha, and mean absolute percentage error was 20.9%. When block level predictions were aggregated across the multiple orchards per region, production prediction errors were between 0–15% from 2016–2019. The ridge regression model can be easily implemented in GIS platforms to deliver block-level yield forecast maps to end users. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Agricultural and Forest Meteorology | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Block-level macadamia yield forecasting using spatio-temporal datasets | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.agrformet.2021.108369 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | James | en |
local.contributor.firstname | Andrew J | en |
local.subject.for2008 | 070699 Horticultural Production not elsewhere classified | en |
local.subject.seo2008 | 820206 Macadamias | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jbrinkho@une.edu.au | en |
local.profile.email | arobson7@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Netherlands | en |
local.identifier.runningnumber | 108369 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.identifier.scopusid | 85101409973 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 303 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Brinkhoff | en |
local.contributor.lastname | Robson | en |
dc.identifier.staff | une-id:jbrinkho | en |
dc.identifier.staff | une-id:arobson7 | en |
local.profile.orcid | 0000-0002-0721-2458 | en |
local.profile.orcid | 0000-0001-5762-8980 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/30271 | en |
local.date.onlineversion | 2021-02-24 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Block-level macadamia yield forecasting using spatio-temporal datasets | en |
local.relation.fundingsourcenote | This project is being delivered by Hort Innovation – with support from the Australian Government Department of Agriculture and Water Resources as part of its Rural R&D for Profit program – and UNE as the co-investor for ST19008 and ST19015. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Brinkhoff, James | en |
local.search.author | Robson, Andrew J | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/7ff75f3a-baa9-49ce-8bf9-c9ffd0358376 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000639140200003 | en |
local.year.available | 2021 | en |
local.year.published | 2021 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/7ff75f3a-baa9-49ce-8bf9-c9ffd0358376 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/7ff75f3a-baa9-49ce-8bf9-c9ffd0358376 | en |
local.subject.for2020 | 300899 Horticultural production not elsewhere classified | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.seo2020 | 260507 Macadamias | en |
dc.notification.token | 2f361d0c-016d-4e85-b398-82908e9658fa | en |
local.codeupdate.date | 2021-12-07T08:16:44.031 | en |
local.codeupdate.eperson | jbrinkho@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | undefined | en |
local.original.seo2020 | 260507 Macadamias | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/BlockLevelBrinkhoffRobson2021JournalArticle.pdf | Published version | 2.25 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
15
checked on Dec 7, 2024
Page view(s)
1,180
checked on Mar 8, 2023
Download(s)
34
checked on Mar 8, 2023
This item is licensed under a Creative Commons License