Contrasting agricultural management effects on soil organic carbon dynamics between topsoil and subsoil

Title
Contrasting agricultural management effects on soil organic carbon dynamics between topsoil and subsoil
Publication Date
2020-08-21
Author(s)
Osanai, Yui
( author )
OrcID: https://orcid.org/0000-0001-6390-5382
Email: yosanai@une.edu.au
UNE Id une-id:yosanai
Knox, Oliver
( author )
OrcID: https://orcid.org/0000-0002-0414-5771
Email: oknox@une.edu.au
UNE Id une-id:oknox
Nachimuthu, Gunasekhar
Wilson, Brian
( author )
OrcID: https://orcid.org/0000-0002-7983-0909
Email: bwilson7@une.edu.au
UNE Id une-id:bwilson7
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
CSIRO Publishing
Place of publication
Australia
DOI
10.1071/SR19379
UNE publication id
une:1959.11/30218
Abstract
Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.
Link
Citation
Soil Research, 59(1), p. 24-33
ISSN
1838-6768
1838-675X
Start page
24
End page
33
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International

Files:

NameSizeformatDescriptionLink