Spatial distribution of soil microbial activity and soil properties associated with Eucalyptus and Acacia plantings in NSW, Australia

Title
Spatial distribution of soil microbial activity and soil properties associated with Eucalyptus and Acacia plantings in NSW, Australia
Publication Date
2021
Author(s)
Amarasinghe, A
Fyfe, C
Knox, O G G
( author )
OrcID: https://orcid.org/0000-0002-0414-5771
Email: oknox@une.edu.au
UNE Id une-id:oknox
Lobry De Bruyn, L A
( author )
OrcID: https://orcid.org/0000-0003-0173-2863
Email: llobryde@une.edu.au
UNE Id une-id:llobryde
Kristiansen, P
( author )
OrcID: https://orcid.org/0000-0003-2116-0663
Email: pkristi2@une.edu.au
UNE Id une-id:pkristi2
Wilson, B R
( author )
OrcID: https://orcid.org/0000-0002-7983-0909
Email: bwilson7@une.edu.au
UNE Id une-id:bwilson7
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
CSIRO Publishing
Place of publication
Australia
DOI
10.1071/SR19393
UNE publication id
une:1959.11/29722
Abstract
Although much work has been completed in Australia to examine the effects on aboveground ecology of environmental plantings using mixed species of native trees, only limited attention has been focused on their effects on soils and soil microbial population. A study was conducted to determine the spatial distribution of microbial activity, total soil organic carbon (TOC), total nitrogen (TN) and extractable phosphorus (P) in soils under Eucalyptus camaldulensis and Acacia pendula. A 13-year-old environmental planting with mixed native tree species at Gunnedah, New South Wales, was used as a study site. Soil samples were taken from both inside and outside the tree canopy at each of the four compass points (N, S, E and W) at depths of 0-5, 5-10, 10-20, 20-30 and 30-50 cm. The soil was tested for heterotrophic respiration (MicroRespTM), TOC and TN (LECO) and P (Colwell). Microbes were more active inside compared with outside the tree canopy in both A. pendula and E. camaldulensis. The basal respiration rate was significantly higher under A. pendula canopy compared with E. camaldulensis canopy. The relative activity of the microbes and concentrations of TOC, TN and P declined with soil depth. Further, TOC, TN and P contents under the canopy of A. pendula were higher than those of E. camaldulensis and showed a significant positive correlation with basal respiration. However, no difference was detected in the various soil properties measured and microbial activity at four compass points around trees. Changes in soil TOC, TN and extractable P due to the tree plantings were significant only for the 0-5 cm soil depth and changes in microbial activity were mostly confined to the upper 20 cm depth. The improved levels of soil microbial activity and soil nutrients under the tree canopy could be used to measure restoration success of environmental plantings.
Link
Citation
Soil Research, 59(6), p. 609-618
ISSN
1838-6768
1838-675X
Start page
609
End page
618

Files:

NameSizeformatDescriptionLink