Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28967
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong Lee, Sen
dc.contributor.authorClark, Samen
dc.contributor.authorvan der Werf, Julius H Jen
dc.date.accessioned2020-07-01T22:46:17Z-
dc.date.available2020-07-01T22:46:17Z-
dc.date.issued2017-12-21-
dc.identifier.citationPLoS One, 12(12), p. 1-22en
dc.identifier.issn1932-6203en
dc.identifier.urihttps://hdl.handle.net/1959.11/28967-
dc.description.abstractGenomic prediction is emerging in a wide range of fields including animal and plant breeding, risk prediction in human precision medicine and forensic. It is desirable to establish a theoretical framework for genomic prediction accuracy when the reference data consists of information sources with varying degrees of relationship to the target individuals. A reference set can contain both close and distant relatives as well as `unrelated' individuals from the wider population in the genomic prediction. The various sources of information were modeled as different populations with different effective population sizes (Nₑ). Both the effective number of chromosome segments (Mₑ) and Nₑ are considered to be a function of the data used for prediction. We validate our theory with analyses of simulated as well as real data, and illustrate that the variation in genomic relationships with the target is a predictor of the information content of the reference set. With a similar amount of data available for each source, we show that close relatives can have a substantially larger effect on genomic prediction accuracy than lesser related individuals. We also illustrate that when prediction relies on closer relatives, there is less improvement in prediction accuracy with an increase in training data or marker panel density. We release software that can estimate the expected prediction accuracy and power when combining different reference sources with various degrees of relationship to the target, which is useful when planning genomic prediction (before or after collecting data) in animal, plant and human genetics.en
dc.languageenen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPLoS Oneen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEstimation of genomic prediction accuracy from reference populations with varying degrees of relationshipen
dc.typeJournal Articleen
dc.identifier.doi10.1371/journal.pone.0189775en
dc.identifier.pmid29267328en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameSen
local.contributor.firstnameSamen
local.contributor.firstnameJulius H Jen
local.relation.isfundedbyARCen
local.subject.for2008070201 Animal Breedingen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.for2008060408 Genomicsen
local.subject.seo2008830399 Livestock Raising not elsewhere classifieden
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.profile.emailsclark37@une.edu.auen
local.profile.emailjvanderw@une.edu.auen
local.output.categoryC1en
local.grant.numberDP160102126en
local.grant.numberFT160100229en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.identifier.runningnumbere0189775en
local.format.startpage1en
local.format.endpage22en
local.identifier.scopusid85038891199en
local.peerreviewedYesen
local.identifier.volume12en
local.identifier.issue12en
local.access.fulltextYesen
local.contributor.lastnameHong Leeen
local.contributor.lastnameClarken
local.contributor.lastnamevan der Werfen
dc.identifier.staffune-id:slee38en
dc.identifier.staffune-id:sclark37en
dc.identifier.staffune-id:jvanderwen
local.profile.orcid0000-0001-8605-1738en
local.profile.orcid0000-0003-2512-1696en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28967en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEstimation of genomic prediction accuracy from reference populations with varying degrees of relationshipen
local.relation.fundingsourcenoteAustralian National Health and Medical Research Council (APP1080157), the Australian Sheep Industry Cooperative Research Centreen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP160102126en
local.search.authorHong Lee, Sen
local.search.authorClark, Samen
local.search.authorvan der Werf, Julius H Jen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/5a5ad8bd-726f-48e0-a6ec-3249853463eeen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000418587400048en
local.year.published2017en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/5a5ad8bd-726f-48e0-a6ec-3249853463eeen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/5a5ad8bd-726f-48e0-a6ec-3249853463eeen
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020310506 Gene mappingen
local.subject.for2020310509 Genomicsen
local.subject.seo2020100407 Insectsen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/EstimationLeeClarkVanDerWerf2017JournalArticle.pdfPublished version3.17 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

55
checked on Nov 23, 2024

Page view(s)

1,192
checked on May 19, 2024

Download(s)

172
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons