Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/28576
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lei, Chengxia | en |
dc.contributor.author | Matsuzawa, Hiroshi | en |
dc.contributor.author | Peng, Rui | en |
dc.contributor.author | Zhou, Maolin | en |
dc.date.accessioned | 2020-04-20T02:24:04Z | - |
dc.date.available | 2020-04-20T02:24:04Z | - |
dc.date.issued | 2018-10-05 | - |
dc.identifier.citation | Journal of Differential Equations, 265(7), p. 2897-2920 | en |
dc.identifier.issn | 1090-2732 | en |
dc.identifier.issn | 0022-0396 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/28576 | - |
dc.description.abstract | We are concerned with the nonlinear problem ut = uxx+f(u), where f is of combustion type, coupled with the Stefan-type free boundary h(t). According to [4,5], for some critical initial data, the transition solution u locally uniformly converges to θ, which is the ignition temperature off, and the free boundary satisfies h(t) =C√t+o(1)√t for some positive constant C and all large time t. In this paper, making use of two different approaches, we establish more accurate upper and lower bound estimates on h(t) for the transition solution, which suggest that the nonlinearity f can essentially influence the propagation speed. | en |
dc.language | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartof | Journal of Differential Equations | en |
dc.title | Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jde.2018.04.053 | en |
local.contributor.firstname | Chengxia | en |
local.contributor.firstname | Hiroshi | en |
local.contributor.firstname | Rui | en |
local.contributor.firstname | Maolin | en |
local.subject.for2008 | 010299 Applied Mathematics not elsewhere classified | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | mzhou6@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | 11671175 | en |
local.grant.number | 11571200 | en |
local.grant.number | PPZY2015A013 | en |
local.grant.number | 17K05340 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 2897 | en |
local.format.endpage | 2920 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 265 | en |
local.identifier.issue | 7 | en |
local.contributor.lastname | Lei | en |
local.contributor.lastname | Matsuzawa | en |
local.contributor.lastname | Peng | en |
local.contributor.lastname | Zhou | en |
dc.identifier.staff | une-id:mzhou6 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/28576 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type | en |
local.relation.fundingsourcenote | National Natural Science Foundation of China, Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Qing Lan Project of Jiangsu Province, Grant-in-Aid for Scientific Research | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Lei, Chengxia | en |
local.search.author | Matsuzawa, Hiroshi | en |
local.search.author | Peng, Rui | en |
local.search.author | Zhou, Maolin | en |
local.istranslated | No | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000436564800004 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/a26ee1bb-7673-40d0-9477-abdc28b596ab | en |
local.subject.for2020 | 490107 Mathematical methods and special functions | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
dc.notification.token | 34048872-cf94-4ec8-bac3-5922c74a85bd | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
2
checked on Dec 7, 2024
Page view(s)
1,376
checked on Nov 5, 2023
Download(s)
2
checked on Nov 5, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.