Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLei, Chengxiaen
dc.contributor.authorMatsuzawa, Hiroshien
dc.contributor.authorPeng, Ruien
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2020-04-20T02:24:04Z-
dc.date.available2020-04-20T02:24:04Z-
dc.date.issued2018-10-05-
dc.identifier.citationJournal of Differential Equations, 265(7), p. 2897-2920en
dc.identifier.issn1090-2732en
dc.identifier.issn0022-0396en
dc.identifier.urihttps://hdl.handle.net/1959.11/28576-
dc.description.abstractWe are concerned with the nonlinear problem ut = uxx+f(u), where f is of combustion type, coupled with the Stefan-type free boundary h(t). According to [4,5], for some critical initial data, the transition solution u locally uniformly converges to θ, which is the ignition temperature off, and the free boundary satisfies h(t) =C√t+o(1)√t for some positive constant C and all large time t. In this paper, making use of two different approaches, we establish more accurate upper and lower bound estimates on h(t) for the transition solution, which suggest that the nonlinearity f can essentially influence the propagation speed.en
dc.languageenen
dc.publisherAcademic Pressen
dc.relation.ispartofJournal of Differential Equationsen
dc.titleRefined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion typeen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jde.2018.04.053en
local.contributor.firstnameChengxiaen
local.contributor.firstnameHiroshien
local.contributor.firstnameRuien
local.contributor.firstnameMaolinen
local.subject.for2008010299 Applied Mathematics not elsewhere classifieden
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.grant.number11671175en
local.grant.number11571200en
local.grant.numberPPZY2015A013en
local.grant.number17K05340en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage2897en
local.format.endpage2920en
local.peerreviewedYesen
local.identifier.volume265en
local.identifier.issue7en
local.contributor.lastnameLeien
local.contributor.lastnameMatsuzawaen
local.contributor.lastnamePengen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:mzhou6en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28576en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRefined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion typeen
local.relation.fundingsourcenoteNational Natural Science Foundation of China, Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Qing Lan Project of Jiangsu Province, Grant-in-Aid for Scientific Researchen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLei, Chengxiaen
local.search.authorMatsuzawa, Hiroshien
local.search.authorPeng, Ruien
local.search.authorZhou, Maolinen
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000436564800004en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a26ee1bb-7673-40d0-9477-abdc28b596aben
local.subject.for2020490107 Mathematical methods and special functionsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
dc.notification.token34048872-cf94-4ec8-bac3-5922c74a85bden
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 7, 2024

Page view(s)

1,376
checked on Nov 5, 2023

Download(s)

2
checked on Nov 5, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.