Positive solutions of elliptic equations with a strong singular potential

Title
Positive solutions of elliptic equations with a strong singular potential
Publication Date
2019
Author(s)
Wei, Lei
Du, Yihong
( author )
OrcID: https://orcid.org/0000-0002-1235-0636
Email: ydu@une.edu.au
UNE Id une-id:ydu
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Wiley-Blackwell Publishing Ltd
Place of publication
United Kingdom
DOI
10.1112/blms.12229
UNE publication id
une:1959.11/28572
Abstract

In this paper, we study positive solutions of the elliptic equation

βˆ’Ξ”π‘’=πœ†π‘‘(π‘₯)π›Όπ‘’βˆ’π‘‘(π‘₯)πœŽπ‘’π‘inΞ©,

where 𝛼>2,𝜎>βˆ’π›Ό, 𝑝>1, 𝑑(π‘₯)=𝑑𝑖𝑠𝑑(π‘₯,πœ•Ξ©), and Ξ© is a bounded smooth domain in ℝ𝑁(𝑁⩾2). When 𝛼=2, the term 1𝑑(π‘₯)𝛼=1𝑑(π‘₯)2 is often called a Hardy potential, and the equation in this case has been extensively investigated. Here we consider the case 𝛼>2, which gives a stronger singularity than the Hardy potential near πœ•Ξ©. We show that when πœ†<0, the equation has no positive solution, while when πœ†>0, the equation has a unique positive solution, and it satisfies

lim𝑑(π‘₯)β†’0𝑒(π‘₯)𝑑(π‘₯)𝛼+πœŽπ‘βˆ’1=πœ†1π‘βˆ’1.

Link
Citation
Bulletin of the London Mathematical Society, 51(2), p. 251-266
ISSN
1469-2120
0024-6093
Start page
251
End page
266

Files:

NameSizeformatDescriptionLink