Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/28560
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | El-Hachem, Maud | en |
dc.contributor.author | McCue, Scott W | en |
dc.contributor.author | Jin, Wang | en |
dc.contributor.author | Du, Yihong | en |
dc.contributor.author | Simpson, Matthew J | en |
dc.date.accessioned | 2020-04-16T02:19:22Z | - |
dc.date.available | 2020-04-16T02:19:22Z | - |
dc.date.issued | 2019-09 | - |
dc.identifier.citation | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2229), p. 1-19 | en |
dc.identifier.issn | 1471-2946 | en |
dc.identifier.issn | 1364-5021 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/28560 | - |
dc.description.abstract | The Fisher-Kolmogorov-Petrovsky-Piskunov model, also known as the Fisher-KPP model, supports travelling wave solutions that are successfully used to model numerous invasive phenomena with applications in biology, ecology and combustion theory. However, there are certain phenomena that the Fisher-KPP model cannot replicate, such as the extinction of invasive populations. The Fisher-Stefan model is an adaptation of the Fisher-KPP model to include a moving boundary whose evolution is governed by a Stefan condition. The Fisher-Stefan model also supports travelling wave solutions; however, a key additional feature of the Fisher-Stefan model is that it is able to simulate population extinction, giving rise to a spreading-extinction dichotomy. In this work, we revisit travelling wave solutions of the Fisher-KPP model and show that these results provide new insight into travelling wave solutions of the Fisher-Stefan model and the spreading-extinction dichotomy. Using a combination of phase plane analysis, perturbation analysis and linearization, we establish a concrete relationship between travelling wave solutions of the Fisher-Stefan model and often-neglected travelling wave solutions of the Fisher-KPP model. Furthermore, we give closed-form approximate expressions for the shape of the travelling wave solutions of the Fisher-Stefan model in the limit of slow travelling wave speeds, c≪1. | en |
dc.language | en | en |
dc.publisher | The Royal Society Publishing | en |
dc.relation.ispartof | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | en |
dc.title | Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1098/rspa.2019.0378 | en |
dc.identifier.pmid | 31611732 | en |
local.contributor.firstname | Maud | en |
local.contributor.firstname | Scott W | en |
local.contributor.firstname | Wang | en |
local.contributor.firstname | Yihong | en |
local.contributor.firstname | Matthew J | en |
local.relation.isfundedby | ARC | en |
local.subject.for2008 | 010202 Biological Mathematics | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | DP190103757 | en |
local.grant.number | DP170100474 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 20190378 | en |
local.format.startpage | 1 | en |
local.format.endpage | 19 | en |
local.identifier.scopusid | 85073191573 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 475 | en |
local.identifier.issue | 2229 | en |
local.contributor.lastname | El-Hachem | en |
local.contributor.lastname | McCue | en |
local.contributor.lastname | Jin | en |
local.contributor.lastname | Du | en |
local.contributor.lastname | Simpson | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/28560 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP190103757 | en |
local.search.author | El-Hachem, Maud | en |
local.search.author | McCue, Scott W | en |
local.search.author | Jin, Wang | en |
local.search.author | Du, Yihong | en |
local.search.author | Simpson, Matthew J | en |
local.istranslated | No | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000488551900028 | en |
local.year.published | 2019 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/97c7e409-af31-49ac-ac7e-7b19b704da28 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.for2020 | 490102 Biological mathematics | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-10-29T10:16:18.134 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490102 Biological mathematics | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
55
checked on Dec 14, 2024
Page view(s)
1,574
checked on Nov 5, 2023
Download(s)
2
checked on Nov 5, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.