Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/28560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEl-Hachem, Mauden
dc.contributor.authorMcCue, Scott Wen
dc.contributor.authorJin, Wangen
dc.contributor.authorDu, Yihongen
dc.contributor.authorSimpson, Matthew Jen
dc.date.accessioned2020-04-16T02:19:22Z-
dc.date.available2020-04-16T02:19:22Z-
dc.date.issued2019-09-
dc.identifier.citationProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2229), p. 1-19en
dc.identifier.issn1471-2946en
dc.identifier.issn1364-5021en
dc.identifier.urihttps://hdl.handle.net/1959.11/28560-
dc.description.abstractThe Fisher-Kolmogorov-Petrovsky-Piskunov model, also known as the Fisher-KPP model, supports travelling wave solutions that are successfully used to model numerous invasive phenomena with applications in biology, ecology and combustion theory. However, there are certain phenomena that the Fisher-KPP model cannot replicate, such as the extinction of invasive populations. The Fisher-Stefan model is an adaptation of the Fisher-KPP model to include a moving boundary whose evolution is governed by a Stefan condition. The Fisher-Stefan model also supports travelling wave solutions; however, a key additional feature of the Fisher-Stefan model is that it is able to simulate population extinction, giving rise to a spreading-extinction dichotomy. In this work, we revisit travelling wave solutions of the Fisher-KPP model and show that these results provide new insight into travelling wave solutions of the Fisher-Stefan model and the spreading-extinction dichotomy. Using a combination of phase plane analysis, perturbation analysis and linearization, we establish a concrete relationship between travelling wave solutions of the Fisher-Stefan model and often-neglected travelling wave solutions of the Fisher-KPP model. Furthermore, we give closed-form approximate expressions for the shape of the travelling wave solutions of the Fisher-Stefan model in the limit of slow travelling wave speeds, c≪1.en
dc.languageenen
dc.publisherThe Royal Society Publishingen
dc.relation.ispartofProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.titleRevisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomyen
dc.typeJournal Articleen
dc.identifier.doi10.1098/rspa.2019.0378en
dc.identifier.pmid31611732en
local.contributor.firstnameMauden
local.contributor.firstnameScott Wen
local.contributor.firstnameWangen
local.contributor.firstnameYihongen
local.contributor.firstnameMatthew Jen
local.relation.isfundedbyARCen
local.subject.for2008010202 Biological Mathematicsen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP190103757en
local.grant.numberDP170100474en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber20190378en
local.format.startpage1en
local.format.endpage19en
local.identifier.scopusid85073191573en
local.peerreviewedYesen
local.identifier.volume475en
local.identifier.issue2229en
local.contributor.lastnameEl-Hachemen
local.contributor.lastnameMcCueen
local.contributor.lastnameJinen
local.contributor.lastnameDuen
local.contributor.lastnameSimpsonen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/28560en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRevisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomyen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP190103757en
local.search.authorEl-Hachem, Mauden
local.search.authorMcCue, Scott Wen
local.search.authorJin, Wangen
local.search.authorDu, Yihongen
local.search.authorSimpson, Matthew Jen
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000488551900028en
local.year.published2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/97c7e409-af31-49ac-ac7e-7b19b704da28en
local.subject.for2020490410 Partial differential equationsen
local.subject.for2020490102 Biological mathematicsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-10-29T10:16:18.134en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490102 Biological mathematicsen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

55
checked on Dec 14, 2024

Page view(s)

1,574
checked on Nov 5, 2023

Download(s)

2
checked on Nov 5, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.