Please use this identifier to cite or link to this item:
Title: Genetic correlations among and between wool, growth and reproduction traits in Merino sheep
Contributor(s): Safari, E (author); Fogarty, N M (author); Gilmour, A R (author); Atkins, K D (author); Mortimer, S I (author); Swan, A (author); Brien, F D (author); Greeff, J C (author); Van Der Werf, Julius Herman  (author)orcid 
Publication Date: 2007
DOI: 10.1111/j.1439-0388.2007.00641.x
Handle Link:
Abstract: Data from seven research resource flocks across Australia were combined to provide accurate estimates of genetic correlations among production traits in Merino sheep. The flocks represented contemporary Australian Merino fine, medium and broad wool strains over the past 30 years. Over 110 000 records were available for analysis for each of the major wool traits, and 50 000 records for reproduction and growth traits with over 2700 sires and 25 000 dams. Individual models developed from the single trait analyses were extended to the various combinations of two-trait models to obtain genetic correlations among six wool traits [clean fleece weight (CFW), greasy fleece weight, fibre diameter (FD), yield, coefficient of variation of fibre diameter and standard deviation of fibre diameter], four growth traits [birth weight, weaning weight, yearling weight (YWT), and hogget weight] and four reproduction traits [fertility, litter size, lambs born per ewe joined, lambs weaned per ewe joined (LW/EJ)]. This study has provided for the first time a comprehensive matrix of genetic correlations among these 14 wool, growth and reproduction traits. The large size of the data set has also provided estimates with very low standard errors. A moderate positive genetic correlation was observed between CFW and FD (0.29 ± 0.02). YWT was positively correlated with CFW (0.23 ± 0.04), FD (0.17 ± 0.04) and LWEJ (0.58 ± 0.06), while LW/EJ was negatively correlated with CFW (−0.26 ± 0.05) and positively correlated with FD (0.06 ± 0.04) and LS (0.68 ± 0.04). These genetic correlations, together with the estimates of heritability and other parameters provide the basis for more accurate prediction of outcomes in complex sheep-breeding programmes designed to improve several traits.
Publication Type: Journal Article
Source of Publication: Journal of Animal Breeding and Genetics, 124(2), p. 65-72
Publisher: Wiley-Blackwell Verlag GmbH
Place of Publication: Berlin, Germany
ISSN: 0931-2668
Field of Research (FOR): 060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics)
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Other Links:
Statistics to Oct 2018: Visitors: 449
Views: 450
Downloads: 0
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record


checked on Nov 27, 2018

Page view(s)

checked on Mar 3, 2019
Google Media

Google ScholarTM



Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.