A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

Title
A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
Publication Date
2012-07-10
Author(s)
Campione, Nicolas E
( author )
OrcID: https://orcid.org/0000-0002-4205-9794
Email: ncampion@une.edu.au
UNE Id une-id:ncampion
Evans, David C
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
BioMed Central Ltd
Place of publication
United Kingdom
DOI
10.1186/1741-7007-10-60
UNE publication id
une:1959.11/27566
Abstract
Background: Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results: Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions: The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Link
Citation
BMC Biology, v.10, p. 1-21
ISSN
1741-7007
Pubmed ID
22781121
Start page
1
End page
21
Rights
Attribution 4.0 International

Files:

NameSizeformatDescriptionLink
openpublished/AUniversalCampione2012JournalArticle.pdf 893.58 KB application/pdf Published version View document