Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27566
Title: A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
Contributor(s): Campione, Nicolas E  (author)orcid ; Evans, David C (author)
Publication Date: 2012-07-10
Open Access: Yes
DOI: 10.1186/1741-7007-10-60
Handle Link: https://hdl.handle.net/1959.11/27566
Abstract: Background: Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results: Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions: The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Publication Type: Journal Article
Source of Publication: BMC Biology, v.10, p. 1-21
Publisher: BioMed Central Ltd
Place of Publication: United Kingdom
ISSN: 1741-7007
Fields of Research (FoR) 2008: 060807 Animal Structure and Function
040308 Palaeontology (incl. Palynology)
060309 Phylogeny and Comparative Analysis
Fields of Research (FoR) 2020: 310911 Animal structure and function
370506 Palaeontology (incl. palynology)
310410 Phylogeny and comparative analysis
Socio-Economic Objective (SEO) 2008: 970106 Expanding Knowledge in the Biological Sciences
970104 Expanding Knowledge in the Earth Sciences
Socio-Economic Objective (SEO) 2020: 280102 Expanding knowledge in the biological sciences
280107 Expanding knowledge in the earth sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
2 files
File Description SizeFormat 
openpublished/AUniversalCampione2012JournalArticle.pdfPublished version872.64 kBAdobe PDF
Download Adobe
View/Open
Show full item record

SCOPUSTM   
Citations

280
checked on Apr 6, 2024

Page view(s)

968
checked on Jul 23, 2023

Download(s)

82
checked on Jul 23, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons