Genetic parameters for faecal worm egg count at different ages in Australian sheep under natural challenge

Title
Genetic parameters for faecal worm egg count at different ages in Australian sheep under natural challenge
Publication Date
2019
Author(s)
Li, L
( author )
OrcID: https://orcid.org/0000-0002-3601-9729
Email: lli4@une.edu.au
UNE Id une-id:lli4
Brown, D J
( author )
OrcID: https://orcid.org/0000-0002-4786-7563
Email: dbrown2@une.edu.au
UNE Id une-id:dbrown2
Swan, A A
( author )
OrcID: https://orcid.org/0000-0001-8048-3169
Email: aswan@une.edu.au
UNE Id une-id:aswan
van der Werf, J H J
( author )
OrcID: https://orcid.org/0000-0003-2512-1696
Email: jvanderw@une.edu.au
UNE Id une-id:jvanderw
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
CSIRO Publishing
Place of publication
Australia
DOI
10.1071/AN17833
UNE publication id
une:1959.11/27241
Abstract
The data used in the present study consisted of 24 535 worm egg count records on sheep observed from 63 to 560 days of age under conditions of the natural challenge of trichostrongylid species. Records were extracted from the Information Nucleus Flock database of the Australia Sheep Cooperative Research Centre program from 2007 to 2011. Records were observed at various ages and subdivided into weaning (W, ~3 months), post-weaning (P, ~4 months), yearling (Y, ~12 months) and hogget (H, ~18 months) age stages and were used to investigate genetic variation at different age stages in univariate analyses and estimate genetic correlations between age stages in multi-trait analyses. The full data were also analysed by random regression models to study how heritability and genetic correlations varied with age. Heritability estimates from univariate analyses were 0.20 ± 0.05, 0.15 ± 0.02, 0.36 ± 0.09, 0.22 ± 0.06 for W, P, Y and H age stages respectively. A similar trend of heritability over ages was found from random regression analyses, which decreased from 0.16 at 90 days to 0.09 at 120 days, following a steady increase to 0.32 at ~410 days, and then decreased afterwards to 0.24 at 520 days. Strong genetic correlations (>0.8) were found between W and P age stages, along with Y and H age stages. Sire by flock interaction effects were significant, and accounted for the reduced estimates of heritability and increased genetic correlations between age stages. The results indicated that a multiple-trait approach is required for genetic evaluation of worm egg count when measurements are at different ages, and the accuracy of evaluations would benefit from recording at least two separate age stages.
Link
Citation
Animal Production Science, 59(7), p. 1201-1208
ISSN
1836-5787
1836-0939
Start page
1201
End page
1208

Files:

NameSizeformatDescriptionLink