Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/27220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAliloo, Hen
dc.contributor.authorMrode, Ren
dc.contributor.authorOkeyo, A Men
dc.contributor.authorNi, Gen
dc.contributor.authorGoddard, M Een
dc.contributor.authorGibson, J Pen
dc.date.accessioned2019-06-20T04:06:37Z-
dc.date.available2019-06-20T04:06:37Z-
dc.date.issued2018-10-
dc.identifier.citationJournal of Dairy Science, 101(10), p. 9108-9127en
dc.identifier.issn1525-3198en
dc.identifier.issn0022-0302en
dc.identifier.urihttps://hdl.handle.net/1959.11/27220-
dc.description.abstractCost-effective high-density (HD) genotypes of livestock species can be obtained by genotyping a proportion of the population using a HD panel and the remainder using a cheaper low-density panel, and then imputing the missing genotypes that are not directly assayed in the low-density panel. The efficacy of genotype imputation can largely be affected by the structure and history of the specific target population and it should be checked before incorporating imputation in routine genotyping practices. Here, we investigated the efficacy of imputation in crossbred dairy cattle populations of East Africa using 4 different commercial single nucleotide polymorphisms (SNP) panels, 3 reference populations, and 3 imputation algorithms. We found that Minimac and a reference population, which included a mixture of crossbred and ancestral purebred animals, provided the highest imputation accuracy compared with other scenarios of imputation. The accuracies of imputation, measured as the correlation between real and imputed genotypes averaged across SNP, were around 0.76 and 0.94 for 7K and 40K SNP, respectively, when imputed up to a 770K panel. We also presented a method to maximize the imputation accuracy of low-density panels, which relies on the pairwise (co)variances between SNP and the minor allele frequency of SNP. The performance of the developed method was tested in a 5-fold cross-validation process where various densities of SNP were selected using the (co)variance method and also by alternative SNP selection methods and then imputed up to the HD panel. The (co)variance method provided the highest imputation accuracies at almost all marker densities, with accuracies being up to 0.19 higher than the random selection of SNP. The accuracies of imputation from 7K and 40K panels selected using the (co)variance method were around 0.80 and 0.94, respectively. The presented method also achieved higher accuracy of genomic prediction at lower densities of selected SNP. The squared correlation between genomic breeding values estimated using imputed genotypes and those from the real 770K HD panel was 0.95 when the accuracy of imputation was 0.64. The presented method for SNP selection is straightforward in its application and can ensure high accuracies in genotype imputation of crossbred dairy populations in East Africa.en
dc.languageenen
dc.publisherElsevier Incen
dc.relation.ispartofJournal of Dairy Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThe feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africaen
dc.typeJournal Articleen
dc.identifier.doi10.3168/jds.2018-14621en
dc.identifier.pmid30077450en
dcterms.accessRightsGolden
local.contributor.firstnameHen
local.contributor.firstnameRen
local.contributor.firstnameA Men
local.contributor.firstnameGen
local.contributor.firstnameM Een
local.contributor.firstnameJ Pen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.for2008060408 Genomicsen
local.subject.for2008070201 Animal Breedingen
local.subject.seo2008839999 Animal Production and Animal Primary Products not elsewhere classifieden
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailhaliloo@une.edu.auen
local.profile.emailgni@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage9108en
local.format.endpage9127en
local.identifier.scopusid85050819395en
local.peerreviewedYesen
local.identifier.volume101en
local.identifier.issue10en
local.access.fulltextYesen
local.contributor.lastnameAlilooen
local.contributor.lastnameMrodeen
local.contributor.lastnameOkeyoen
local.contributor.lastnameNien
local.contributor.lastnameGoddarden
local.contributor.lastnameGibsonen
dc.identifier.staffune-id:halilooen
dc.identifier.staffune-id:gnien
local.profile.orcid0000-0002-5587-6929en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/27220en
local.date.onlineversion2018-08-01-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africaen
local.relation.fundingsourcenoteBill & Melinda Gates Foundation; Illumina; Geneseeken
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAliloo, Hen
local.search.authorMrode, Ren
local.search.authorOkeyo, A Men
local.search.authorNi, Gen
local.search.authorGoddard, M Een
local.search.authorGibson, J Pen
local.uneassociationUnknownen
local.identifier.wosid000445019000039en
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/ee53e5d9-6a7f-4e4b-b1ee-58101ba85f49en
local.subject.for2020310506 Gene mappingen
local.subject.for2020310509 Genomicsen
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.seo2020109999 Other animal production and animal primary products not elsewhere classifieden
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

28
checked on Nov 23, 2024

Page view(s)

1,806
checked on Nov 24, 2024

Download(s)

4
checked on Nov 24, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons