Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/26838
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gureyev, Timur E | en |
dc.contributor.author | Kozlov, Alexander | en |
dc.contributor.author | Nesterets, Yakov I | en |
dc.contributor.author | Paganin, David M | en |
dc.contributor.author | Martin, Andrew V | en |
dc.contributor.author | Quiney, Harry M | en |
dc.date.accessioned | 2019-05-07T04:15:47Z | - |
dc.date.available | 2019-05-07T04:15:47Z | - |
dc.date.issued | 2018-11 | - |
dc.identifier.citation | IUCrJ, 5(6), p. 716-726 | en |
dc.identifier.issn | 2052-2525 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/26838 | - |
dc.description.abstract | It is shown that the average signal-to-noise ratio (SNR) in the three-dimensional electron-density distribution of a sample reconstructed by coherent diffractive imaging cannot exceed twice the square root of the ratio of the mean total number of scattered photons detected during the scan and the number of spatially resolved voxels in the reconstructed volume. This result leads to an upper bound on Shannon's information capacity of this imaging method by specifying the maximum number of distinguishable density distributions within the reconstructed volume when the radiation dose delivered to the sample and the spatial resolution are both fixed. If the spatially averaged SNR in the reconstructed electron density is fixed instead, the radiation dose is shown to be proportional to the third or fourth power of the spatial resolution, depending on the sampling of the three-dimensional diffraction space and the scattering power of the sample. | en |
dc.language | en | en |
dc.publisher | International Union of Crystallography (IUCr) | en |
dc.relation.ispartof | IUCrJ | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Signal-to-noise, spatial resolution and information capacity of coherent diffraction imaging | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1107/S2052252518010941 | en |
dc.identifier.pmid | 30443356 | en |
dcterms.accessRights | Gold | en |
local.contributor.firstname | Timur E | en |
local.contributor.firstname | Alexander | en |
local.contributor.firstname | Yakov I | en |
local.contributor.firstname | David M | en |
local.contributor.firstname | Andrew V | en |
local.contributor.firstname | Harry M | en |
local.subject.for2008 | 020599 Optical Physics not elsewhere classified | en |
local.subject.seo2008 | 970102 Expanding Knowledge in the Physical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | tgureyev@une.edu.au | en |
local.profile.email | ynestere@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 716 | en |
local.format.endpage | 726 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 5 | en |
local.identifier.issue | 6 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Gureyev | en |
local.contributor.lastname | Kozlov | en |
local.contributor.lastname | Nesterets | en |
local.contributor.lastname | Paganin | en |
local.contributor.lastname | Martin | en |
local.contributor.lastname | Quiney | en |
dc.identifier.staff | une-id:tgureyev | en |
dc.identifier.staff | une-id:ynestere | en |
local.profile.orcid | 0000-0002-1103-0649 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/26838 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Signal-to-noise, spatial resolution and information capacity of coherent diffraction imaging | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Gureyev, Timur E | en |
local.search.author | Kozlov, Alexander | en |
local.search.author | Nesterets, Yakov I | en |
local.search.author | Paganin, David M | en |
local.search.author | Martin, Andrew V | en |
local.search.author | Quiney, Harry M | en |
local.uneassociation | Unknown | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/1a00d5e6-d3b9-4d58-b824-8ac7aa8f6a4e | en |
local.subject.for2020 | 510204 Photonics, optoelectronics and optical communications | en |
local.subject.seo2020 | 280120 Expanding knowledge in the physical sciences | en |
dc.notification.token | 9c918ecf-885d-425b-b680-06d680550f57 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
10
checked on Nov 2, 2024
Page view(s)
1,600
checked on Jun 16, 2024
Download(s)
2
checked on Jun 16, 2024
This item is licensed under a Creative Commons License