Please use this identifier to cite or link to this item:
Title: Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements
Contributor(s): Pfeifer, Marion (author); Gonsamo, Alemu (author); Woodgate, William (author); Cayuela, Luis (author); Marshall, Andrew R (author); Ledo, Alicia (author); Paine, C E Timothy  (author)orcid ; Marchant, Rob (author); Burt, Andrew (author); Calders, Kim (author); Courtney-Mustaphi, Colin (author); Cuni-Sanchez, Aida (author); Deere, Nicolas J (author); Denu, Dereje (author); de Tanago, Jose Gonzalez (author); Hayward, Robin (author); Lau, Alvaro (author); Macia, Manuel J (author); Olivier, Pieter I (author); Pellikka, Petri (author); Seki, Hamidu (author); Shirima, Deo (author); Trevithick, Rebecca (author); Wedeux, Beatrice (author); Wheeler, Charlotte (author); Munishi, Pantaleo K T (author); Martin, Thomas (author); Mustari, Abdul (author); Platts, Philip J (author)
Publication Date: 2018-01-08
Open Access: Yes
DOI: 10.1186/s40663-017-0118-7
Handle Link:
Abstract: Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics. Methods: Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences. Results: Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model. Conclusions: We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect.
Publication Type: Journal Article
Source of Publication: Forest Ecosystems, v.5, p. 1-14
Publisher: SpringerOpen
Place of Publication: Germany
ISSN: 2197-5620
Field of Research (FOR): 060202 Community Ecology (excl. Invasive Species Ecology)
Socio-Economic Outcome Codes: 960806 Forest and Woodlands Flora, Fauna and Biodiversity
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
1 files
File SizeFormat 
openpublished/TropicalPaine2018JournalArticle.pdf1.34 MBAdobe PDF
Download Adobe
Show full item record
Google Media

Google ScholarTM



Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.