Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26563
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Leifengen
dc.contributor.authorWelch, Mitchellen
dc.contributor.authorDobos, Robinen
dc.contributor.authorKwan, Paulen
dc.contributor.authorWang, Wenshengen
dc.date.accessioned2019-03-28T22:17:46Z-
dc.date.available2019-03-28T22:17:46Z-
dc.date.issued2018-07-
dc.identifier.citationComputers and Electronics in Agriculture, v.150, p. 394-401en
dc.identifier.issn1872-7107en
dc.identifier.issn0168-1699en
dc.identifier.urihttps://hdl.handle.net/1959.11/26563-
dc.description.abstractGrazing is the most important activity that ruminant livestock undertake daily. A number of studies have used motion sensors to study the grazing behaviour of ruminant livestock. However, few have attempted to validate their approaches against various sward surface heights (SSH). The objectives of our study were to: (1) identify and compare the effects of different SSH on the grazing behaviour of sheep by analyzing data collected by a collar mounted Inertial Measurement Unit (IMU) sensor; (2) calculate the relative importance of the extracted features on grazing identification and compare the consistency of the selected features across various SSH; (3) validate the robustness by using classifiers trained from the dataset with specific SSH to distinguish the grazing activity on the datasets from different SSH; and (4) visualize the classification results of grazing versus non-grazing activities on various SSH. Linear Discriminant Analysis (LDA) was chosen as the classification method, while Probabilistic Principal Component Analysis (PPCA) was used to reduce dimensionality of the feature space for visualization of the results. Experimental results revealed that (1) our approach achieved high classification accuracy of grazing behaviour (over 95%) on all the epochs regardless of SSH; (2) Mean of accelerometer Z-axis, Entropy of accelerometer Y-axis, Entropy of accelerometer Z-axis, Mean of gyroscope X-axis and Mean of gyroscope Y-axis were the top 5 features that contributed most in classifying the grazing versus non-grazing activities and there were consistent trends in features across the three SSH; (3) there was enough robustness when the trained LDA classifier on a specific SSH was used to classify behaviour on different SSH; and (4) there existed a clear linear boundary between the data points representing grazing and those of non-grazing behaviour. Overall, our research confirmed that IMU sensors can be a very effective tool for identifying the grazing behaviour of sheep and there is enough robustness to use a trained LDA classifier on a specific pasture SSH to classify grazing behaviour at different SSH pastures.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofComputers and Electronics in Agricultureen
dc.titleComparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensoren
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.compag.2018.05.004en
local.contributor.firstnameLeifengen
local.contributor.firstnameMitchellen
local.contributor.firstnameRobinen
local.contributor.firstnamePaulen
local.contributor.firstnameWenshengen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008070203 Animal Managementen
local.subject.seo2008830310 Sheep - Meaten
local.subject.seo2008830311 Sheep - Woolen
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmwelch8@une.edu.auen
local.profile.emailrdobos2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryC1en
local.grant.numberP163020020en
local.grant.numberJBYW-AII-2017-36en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeNetherlandsen
local.format.startpage394en
local.format.endpage401en
local.identifier.scopusid85047263262en
local.peerreviewedYesen
local.identifier.volume150en
local.contributor.lastnameGuoen
local.contributor.lastnameWelchen
local.contributor.lastnameDobosen
local.contributor.lastnameKwanen
local.contributor.lastnameWangen
dc.identifier.staffune-id:mwelch8en
dc.identifier.staffune-id:rdobos2en
dc.identifier.staffune-id:wkwan2en
local.profile.orcid0000-0003-4220-8734en
local.profile.orcid0000-0002-9110-6729en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/26563en
local.date.onlineversion2018-05-22-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleComparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensoren
local.relation.fundingsourcenoteState Administration of Foreign Experts Affairs, PRC and Basic Research operating expenses Program of AII-CAASen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorGuo, Leifengen
local.search.authorWelch, Mitchellen
local.search.authorDobos, Robinen
local.search.authorKwan, Paulen
local.search.authorWang, Wenshengen
local.uneassociationUnknownen
local.identifier.wosid000437079900039en
local.year.available2018en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/35012c34-0921-4b9c-a96e-f4eeb664722den
local.subject.for2020460308 Pattern recognitionen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
local.subject.seo2020100412 Sheep for meaten
local.subject.seo2020100413 Sheep for woolen
dc.notification.token90b8d377-7439-4ae9-af81-d434be38b1a8en
local.codeupdate.date2021-11-08T15:23:06.701en
local.codeupdate.epersonmwelch8@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020300302 Animal managementen
local.original.for2020undefineden
local.original.seo2020100412 Sheep for meaten
local.original.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
local.original.seo2020100413 Sheep for woolen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

22
checked on May 25, 2024

Page view(s)

1,886
checked on May 26, 2024

Download(s)

4
checked on May 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.