Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26537
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorWei, Leien
dc.contributor.authorZhou, Lingen
dc.date.accessioned2019-03-27T03:30:06Z-
dc.date.available2019-03-27T03:30:06Z-
dc.date.issued2018-12-
dc.identifier.citationJournal of Dynamics and Differential Equations, 30(4), p. 1389-1426en
dc.identifier.issn1572-9222en
dc.identifier.issn1040-7294en
dc.identifier.urihttps://hdl.handle.net/1959.11/26537-
dc.description.abstractWe investigate the influence of a shifting environment on the spreading of an invasive species through a model given by the diffusive logistic equation with a free boundary. When the environment is homogeneous and favourable, this model was first studied in Du and Lin (SIAM J Math Anal 42:377–405, 2010), where a spreading–vanishing dichotomy was established for the long-time dynamics of the species, and when spreading happens, it was shown that the species invades the new territory at some uniquely determined asymptotic speed c<sub>0</sub> > 0. Here we consider the situation that part of such an environment becomes unfavourable, and the unfavourable range of the environment moves into the favourable part with speed c > 0. We prove that when c ≥ c<sub>0</sub>, the species always dies out in the long-run, but when 0 < c < c<sub>0</sub>, the long-time behavior of the species is determined by a trichotomy described by (a) vanishing, (b) borderline spreading, or (c) spreading. If the initial population is written in the form u<sub>0</sub>(x) = σϕ(x) with ϕ fixed and σ > 0 a parameter, then there exists σ<sub>0</sub> > 0 such that vanishing happens when σ ∈ (0,σ<sub>0</sub>), borderline spreading happens when σ = σ<sub>0</sub>, and spreading happens when σ > σ<sub>0</sub>.en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofJournal of Dynamics and Differential Equationsen
dc.titleSpreading in a Shifting Environment Modeled by the Diffusive Logistic Equation with a Free Boundaryen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10884-017-9614-2en
local.contributor.firstnameYihongen
local.contributor.firstnameLeien
local.contributor.firstnameLingen
local.relation.isfundedbyARCen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.output.categoryC1en
local.grant.numberDP150101867en
local.grant.number11371117en
local.grant.number11271167en
local.grant.number11401515en
local.grant.numberBK20130002en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage1389en
local.format.endpage1426en
local.identifier.scopusid85028328690en
local.peerreviewedYesen
local.identifier.volume30en
local.identifier.issue4en
local.contributor.lastnameDuen
local.contributor.lastnameWeien
local.contributor.lastnameZhouen
dc.identifier.staffune-id:yduen
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/26537en
local.date.onlineversion2017-08-24-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSpreading in a Shifting Environment Modeled by the Diffusive Logistic Equation with a Free Boundaryen
local.relation.fundingsourcenoteNSFC and Natural Science Fund of Distinguished Young Scholars of Jiangsu Provinceen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP150101867en
local.search.authorDu, Yihongen
local.search.authorWei, Leien
local.search.authorZhou, Lingen
local.uneassociationUnknownen
local.identifier.wosid000449273200002en
local.year.available2017en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/5fe4aa0c-8751-45b4-8ce6-3d6e032ee28cen
local.subject.for2020490102 Biological mathematicsen
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-05T10:53:40.784en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

39
checked on May 25, 2024

Page view(s)

1,572
checked on May 5, 2024

Download(s)

6
checked on May 5, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.