Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/26278
Title: Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat
Contributor(s): Peoples, Mark B (author); Swan, Antony D (author); Goward, Laura (author); Kirkegaard, John A (author); Hunt, James R (author); Li, Guangdi D (author); Schwenke, Graeme D  (author)orcid ; Herridge, David F  (author)orcid ; Moodie, Michael (author); Wilhelm, Nigel (author); Potter, Trent (author); Denton, Matthew D (author); Browne, Claire (author); Phillips, Lori A (author); Khan, Dil Fayaz (author)
Publication Date: 2017
DOI: 10.1071/SR16330
Handle Link: https://hdl.handle.net/1959.11/26278
Abstract: Nitrogen (N) contributed by legumes is an important component of N supply to subsequent cereal crops, yet few Australian grain-growers routinely monitor soil mineral N before applying N fertiliser. Soil and crop N data from 16 dryland experiments conducted in eastern Australia from 1989–2016 were examined to explore the possibility of developing simple predictive relationships to assist farmer decision-making. In each experiment, legume crops were harvested for grain or brown-manured (BM, terminated before maturity with herbicide), and wheat, barley or canola were grown. Soil mineral N measured immediately before sowing wheat in the following year was significantly higher (P < 0.05) after 31 of the 33 legume pre-cropping treatments than adjacent non-legume controls. The average improvements in soil mineral N were greater for legume BM (60 ± 16 kg N/ha; n = 5) than grain crops (35 ± 20 kg N/ha; n = 26), but soil N benefits were similar when expressed on the basis of summer fallow rainfall (0.15 ± 0.09 kg N/ha per mm), residual legume shoot dry matter (9 ± 5 kg N/ha per t/ha), or total legume residue N (28 ± 11%). Legume grain crops increased soil mineral N by 18 ± 9 kg N/ha per t/ha grain harvested. Apparent recovery of legume residue N by wheat averaged 30 ± 10% for 20 legume treatments in a subset of eight experiments. Apparent recovery of fertiliser N in the absence of legumes in two of these experiments was 64 ± 16% of the 51-75 kg fertiliser-N/ha supplied. The 25 year dataset provided new insights into the expected availability of soil mineral N after legumes and the relative value of legume N to a following wheat crop, which can guide farmer decisions regarding N fertiliser use.
Publication Type: Journal Article
Source of Publication: Soil Research, 55(6), p. 600-615
Publisher: CSIRO Publishing
Place of Publication: Australia
ISSN: 1838-6768
1838-675X
Fields of Research (FoR) 2008: 070302 Agronomy
070306 Crop and Pasture Nutrition
Fields of Research (FoR) 2020: 300403 Agronomy
300407 Crop and pasture nutrition
Socio-Economic Objective (SEO) 2008: 961402 Farmland, Arable Cropland and Permanent Cropland Soils
960904 Farmland, Arable Cropland and Permanent Cropland Land Management
Socio-Economic Objective (SEO) 2020: 180605 Soils
180603 Evaluation, allocation, and impacts of land use
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
1 files
File SizeFormat 
Show full item record

SCOPUSTM   
Citations

48
checked on Dec 7, 2024

Page view(s)

1,390
checked on Mar 24, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.