Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/23211
Title: | What does the 'closed herd' really mean for Australian breeding companies and their customers? | Contributor(s): | Bunter, Kim L (author) ; Hermesch, Susanne (author) | Publication Date: | 2017 | DOI: | 10.1071/an17321 | Handle Link: | https://hdl.handle.net/1959.11/23211 | Abstract: | The perception that the genetic background of the Australian pig population is limiting for genetic improvement of commercial pigs in Australia is considered in the context of well established theory combined with practical evidence. The diversity of pig breeds used in modern commercial pig-breeding programs is diminished worldwide relative to all the pig breeds available. Australia is no different in this respect. The use of predominantly three main breeds (Large White, Landrace, Duroc) and synthetic lines, with contributions from other minor breeds to form the basis of a cross-breeding system for commercial pig production is well established internationally. The Australian concern of relatively small founder populations is potentially of relevance, from a theoretical perspective, for (1) the prevalence of defects or the presence of desirable alleles, and (2) the loss of genetic variation or increase in inbreeding depression resulting from increased inbreeding in closed nucleus lines, potentially reducing response to selection. However, rates of response achieved in Australian herds are generally commensurate with the performance recording and selection emphasis applied, and do not appear to be unduly restricted. Moreover, favourable alleles present in unrepresented breeds are frequently present in the three major breeds elsewhere, and therefore would be expected to be present within the Australian populations. Wider testing would provide confirmation of this. Comparison of estimates of effective population size of Australian populations with experimental selection lines overseas (e.g. INRA) or other intensely selected species (e.g. Holstein cattle) suggest adequate genetic diversity to achieve ongoing genetic improvement in the Australian pig industry. However, fitness traits should be included in breeding goals. What remains to be seen is whether novel phenotypes or genotypes are required to meet future challenges, which might be imposed by changes in the environment (e.g. climate change, disease) or market needs. Given probable overlap in genetic merit across Australian and foreign populations for unselected attributes, we suggest that sufficient genetic resources are already present in Australian herds to continue commercial progress within existing Australian populations that have adapted to Australian conditions. | Publication Type: | Journal Article | Source of Publication: | Animal Production Science, 57(12), p. 2353-2359 | Publisher: | CSIRO Publishing | Place of Publication: | Australia | ISSN: | 1836-5787 1836-0939 |
Fields of Research (FoR) 2008: | 070201 Animal Breeding | Fields of Research (FoR) 2020: | 300305 Animal reproduction and breeding | Socio-Economic Objective (SEO) 2008: | 830308 Pigs | Socio-Economic Objective (SEO) 2020: | 100410 Pigs | Peer Reviewed: | Yes | HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
---|---|
Appears in Collections: | Animal Genetics and Breeding Unit (AGBU) Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Dec 7, 2024
Page view(s)
2,486
checked on Apr 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.