Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/23080
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Sang Hong | en |
dc.contributor.author | Sapkota, Yadav | en |
dc.contributor.author | Fung, Jenny | en |
dc.contributor.author | Montgomery, Grant W | en |
local.source.editor | Editor(s): Thomas D'Hooghe | en |
dc.date.accessioned | 2018-05-24T10:23:00Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Biomarkers for Endometriosis: State of the Art, p. 83-93 | en |
dc.identifier.isbn | 9783319598567 | en |
dc.identifier.isbn | 9783319598543 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/23080 | - |
dc.description.abstract | GWAS studies identified seven genomic regions with robust evidence for genome-wide significant association with endometriosis risk. One important question that arises is whether these genetic markers can be used to predict risk of developing endometriosis for individual women. As with most complex diseases, the effect sizes for genetic markers linked to endometriosis risk are small with odds ratios less than 1.3. If we combine information from all seven markers, we explain only 1.85% of the total phenotypic variance on the liability scale (assuming a population prevalence of endometriosis of 8%) with no predictive power for individual risk. To explore the ability of all common genetic markers to predict endometriosis risk in individuals, we conducted simulations to quantify how useful endometriosis risk prediction is given current parameters. Applying our estimate of heritability (h² = 0.26) from all common SNPs and assuming data were available from ~30,000 endometriosis cases, the proportion of variance explained by the risk predictor is still only ~0.08. To improve this prediction would require a far greater sample size. Current data may be useful for population-based stratification into risk categories. This can have applications in some cases such as improved efficiency of screening in breast cancer. In the future, risk prediction for endometriosis might be improved through combining genetic risk scores with clinical data, estimates of environmental effects such as DNA methylation signals, and/or better understanding of disease subtypes. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Biomarkers for Endometriosis: State of the Art | en |
dc.relation.isversionof | 1 | en |
dc.title | Genetic Biomarkers for Endometriosis | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.1007/978-3-319-59856-7_5 | en |
dc.subject.keywords | Genomics | en |
dc.subject.keywords | Population, Ecological and Evolutionary Genetics | en |
dc.subject.keywords | Quantitative Genetics (incl. Disease and Trait Mapping Genetics) | en |
local.contributor.firstname | Sang Hong | en |
local.contributor.firstname | Yadav | en |
local.contributor.firstname | Jenny | en |
local.contributor.firstname | Grant W | en |
local.subject.for2008 | 060411 Population, Ecological and Evolutionary Genetics | en |
local.subject.for2008 | 060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics) | en |
local.subject.for2008 | 060408 Genomics | en |
local.subject.seo2008 | 970111 Expanding Knowledge in the Medical and Health Sciences | en |
local.subject.seo2008 | 970106 Expanding Knowledge in the Biological Sciences | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | slee38@une.edu.au | en |
local.profile.email | g.montgomery1@uq.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20180228-164613 | en |
local.publisher.place | Cham, Switzerland | en |
local.identifier.totalchapters | 12 | en |
local.format.startpage | 83 | en |
local.format.endpage | 93 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Lee | en |
local.contributor.lastname | Sapkota | en |
local.contributor.lastname | Fung | en |
local.contributor.lastname | Montgomery | en |
dc.identifier.staff | une-id:slee38 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:23264 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Genetic Biomarkers for Endometriosis | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.relation.url | https://nla.gov.au/anbd.bib-an61290509 | en |
local.relation.grantdescription | NHMRC/1080157 | en |
local.search.author | Lee, Sang Hong | en |
local.search.author | Sapkota, Yadav | en |
local.search.author | Fung, Jenny | en |
local.search.author | Montgomery, Grant W | en |
local.uneassociation | Unknown | en |
local.year.published | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/d986d992-24dc-4c04-b5bc-14bf8ceeafdb | en |
local.subject.for2020 | 310506 Gene mapping | en |
local.subject.for2020 | 310509 Genomics | en |
local.subject.seo2020 | 280112 Expanding knowledge in the health sciences | en |
dc.notification.token | 672c2b57-72c7-4a3a-9300-21d2d5473b8b | en |
Appears in Collections: | Book Chapter School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
4
checked on Nov 9, 2024
Page view(s)
1,876
checked on Feb 25, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.