Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/23080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorSapkota, Yadaven
dc.contributor.authorFung, Jennyen
dc.contributor.authorMontgomery, Grant Wen
local.source.editorEditor(s): Thomas D'Hoogheen
dc.date.accessioned2018-05-24T10:23:00Z-
dc.date.issued2017-
dc.identifier.citationBiomarkers for Endometriosis: State of the Art, p. 83-93en
dc.identifier.isbn9783319598567en
dc.identifier.isbn9783319598543en
dc.identifier.urihttps://hdl.handle.net/1959.11/23080-
dc.description.abstractGWAS studies identified seven genomic regions with robust evidence for genome-wide significant association with endometriosis risk. One important question that arises is whether these genetic markers can be used to predict risk of developing endometriosis for individual women. As with most complex diseases, the effect sizes for genetic markers linked to endometriosis risk are small with odds ratios less than 1.3. If we combine information from all seven markers, we explain only 1.85% of the total phenotypic variance on the liability scale (assuming a population prevalence of endometriosis of 8%) with no predictive power for individual risk. To explore the ability of all common genetic markers to predict endometriosis risk in individuals, we conducted simulations to quantify how useful endometriosis risk prediction is given current parameters. Applying our estimate of heritability (h² = 0.26) from all common SNPs and assuming data were available from ~30,000 endometriosis cases, the proportion of variance explained by the risk predictor is still only ~0.08. To improve this prediction would require a far greater sample size. Current data may be useful for population-based stratification into risk categories. This can have applications in some cases such as improved efficiency of screening in breast cancer. In the future, risk prediction for endometriosis might be improved through combining genetic risk scores with clinical data, estimates of environmental effects such as DNA methylation signals, and/or better understanding of disease subtypes.en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofBiomarkers for Endometriosis: State of the Arten
dc.relation.isversionof1en
dc.titleGenetic Biomarkers for Endometriosisen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-319-59856-7_5en
dc.subject.keywordsGenomicsen
dc.subject.keywordsPopulation, Ecological and Evolutionary Geneticsen
dc.subject.keywordsQuantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.contributor.firstnameSang Hongen
local.contributor.firstnameYadaven
local.contributor.firstnameJennyen
local.contributor.firstnameGrant Wen
local.subject.for2008060411 Population, Ecological and Evolutionary Geneticsen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.for2008060408 Genomicsen
local.subject.seo2008970111 Expanding Knowledge in the Medical and Health Sciencesen
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.profile.emailg.montgomery1@uq.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20180228-164613en
local.publisher.placeCham, Switzerlanden
local.identifier.totalchapters12en
local.format.startpage83en
local.format.endpage93en
local.peerreviewedYesen
local.contributor.lastnameLeeen
local.contributor.lastnameSapkotaen
local.contributor.lastnameFungen
local.contributor.lastnameMontgomeryen
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:23264en
dc.identifier.academiclevelAcademicen
local.title.maintitleGenetic Biomarkers for Endometriosisen
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.relation.urlhttps://nla.gov.au/anbd.bib-an61290509en
local.relation.grantdescriptionNHMRC/1080157en
local.search.authorLee, Sang Hongen
local.search.authorSapkota, Yadaven
local.search.authorFung, Jennyen
local.search.authorMontgomery, Grant Wen
local.uneassociationUnknownen
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/d986d992-24dc-4c04-b5bc-14bf8ceeafdben
local.subject.for2020310506 Gene mappingen
local.subject.for2020310509 Genomicsen
local.subject.seo2020280112 Expanding knowledge in the health sciencesen
dc.notification.token672c2b57-72c7-4a3a-9300-21d2d5473b8ben
Appears in Collections:Book Chapter
School of Environmental and Rural Science
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 9, 2024

Page view(s)

1,876
checked on Feb 25, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.