Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSadgrove, Edmunden
dc.contributor.authorFalzon, Gregoryen
dc.contributor.authorMiron, Daviden
dc.contributor.authorLamb, Daviden
dc.date.accessioned2018-05-10T09:48:00Z-
dc.date.issued2018-
dc.identifier.citationComputers in Industry, v.98, p. 183-191en
dc.identifier.issn1872-6194en
dc.identifier.issn0166-3615en
dc.identifier.urihttps://hdl.handle.net/1959.11/22977-
dc.description.abstractIt is necessary for autonomous robotics in agriculture to provide real time feedback, but due to a diverse array of objects and lack of landscape uniformity this objective is inherently complex. The current study presents two implementations of the multiple-expert colour feature extreme learning machine (MECELM). The MEC-ELM is a cascading algorithm that has been implemented along side a summed area table (SAT) for fast feature extraction and object classification, for a fully functioning object detection algorithm. The MEC-ELM is an implementation of the colour feature extreme learning machine (CF-ELM), which is an extreme learning machine (ELM) with a partially connected hidden layer; taking three colour bands as inputs. The colour implementation used with the SAT enable the MEC-ELM to find and classify objects quickly, with 84% precision and 91% recall in weed detection in the Y'UV colour space and in 0.5s per frame. The colour implementation is however limited to low resolution images and for this reason a colour level co-occurrence matrix (CLCM) variant of the MEC-ELM is proposed. This variant uses the SAT to produce a CLCM and texture analyses, with texture values processed as an input to the MEC-ELM. This enabled the MEC-ELM to achieve 78–85% precision and 81-93% recall in cattle, weed and quad bike detection and in times between 1 and 2s per frame. Both implementations were benchmarked on a standard i7 mobile processor. Thus the results presented in this paper demonstrated that the MEC-ELM with SAT grid and CLCM makes an ideal candidate for fast object detection in complex and/or agricultural landscapes.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofComputers in Industryen
dc.titleReal-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM)en
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.compind.2018.03.014en
dc.subject.keywordsAgricultural Spatial Analysis and Modellingen
dc.subject.keywordsComputer Visionen
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameEdmunden
local.contributor.firstnameGregoryen
local.contributor.firstnameDaviden
local.contributor.firstnameDaviden
local.subject.for2008070104 Agricultural Spatial Analysis and Modellingen
local.subject.for2008080104 Computer Visionen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008960904 Farmland, Arable Cropland and Permanent Cropland Land Managementen
local.subject.seo2008960804 Farmland, Arable Cropland and Permanent Cropland Flora, Fauna and Biodiversityen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolResearch Servicesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailesadgro2@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emaildmiron@une.edu.auen
local.profile.emaildlamb@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20180323-10445en
local.publisher.placeNetherlandsen
local.format.startpage183en
local.format.endpage191en
local.identifier.scopusid85044151304en
local.peerreviewedYesen
local.identifier.volume98en
local.contributor.lastnameSadgroveen
local.contributor.lastnameFalzonen
local.contributor.lastnameMironen
local.contributor.lastnameLamben
dc.identifier.staffune-id:esadgro2en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:dmironen
dc.identifier.staffune-id:dlamben
local.profile.orcid0000-0002-8710-9900en
local.profile.orcid0000-0002-1989-9357en
local.profile.orcid0000-0003-2157-5439en
local.profile.orcid0000-0002-2917-2231en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:23161en
local.identifier.handlehttps://hdl.handle.net/1959.11/22977en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleReal-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSadgrove, Edmunden
local.search.authorFalzon, Gregoryen
local.search.authorMiron, Daviden
local.search.authorLamb, Daviden
local.uneassociationUnknownen
local.identifier.wosid000434749900017en
local.year.published2018en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/55b4ca76-5de5-43d9-a8d9-b3209954a71een
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020460304 Computer visionen
local.subject.seo2020180606 Terrestrial biodiversityen
local.subject.seo2020180603 Evaluation, allocation, and impacts of land useen
dc.notification.tokenf0cf1660-9e67-4f21-96d1-ab24bb7095a8en
local.codeupdate.date2022-02-14T08:43:44.620en
local.codeupdate.epersonrtobler@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020undefineden
local.original.for2020460304 Computer visionen
local.original.for2020300206 Agricultural spatial analysis and modellingen
local.original.seo2020180606 Terrestrial biodiversityen
local.original.seo2020180607 Terrestrial erosionen
local.original.seo2020180603 Evaluation, allocation, and impacts of land useen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

33
checked on Dec 21, 2024

Page view(s)

2,750
checked on Mar 3, 2024

Download(s)

4
checked on Mar 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.