Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/22977
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sadgrove, Edmund | en |
dc.contributor.author | Falzon, Gregory | en |
dc.contributor.author | Miron, David | en |
dc.contributor.author | Lamb, David | en |
dc.date.accessioned | 2018-05-10T09:48:00Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Computers in Industry, v.98, p. 183-191 | en |
dc.identifier.issn | 1872-6194 | en |
dc.identifier.issn | 0166-3615 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/22977 | - |
dc.description.abstract | It is necessary for autonomous robotics in agriculture to provide real time feedback, but due to a diverse array of objects and lack of landscape uniformity this objective is inherently complex. The current study presents two implementations of the multiple-expert colour feature extreme learning machine (MECELM). The MEC-ELM is a cascading algorithm that has been implemented along side a summed area table (SAT) for fast feature extraction and object classification, for a fully functioning object detection algorithm. The MEC-ELM is an implementation of the colour feature extreme learning machine (CF-ELM), which is an extreme learning machine (ELM) with a partially connected hidden layer; taking three colour bands as inputs. The colour implementation used with the SAT enable the MEC-ELM to find and classify objects quickly, with 84% precision and 91% recall in weed detection in the Y'UV colour space and in 0.5s per frame. The colour implementation is however limited to low resolution images and for this reason a colour level co-occurrence matrix (CLCM) variant of the MEC-ELM is proposed. This variant uses the SAT to produce a CLCM and texture analyses, with texture values processed as an input to the MEC-ELM. This enabled the MEC-ELM to achieve 78–85% precision and 81-93% recall in cattle, weed and quad bike detection and in times between 1 and 2s per frame. Both implementations were benchmarked on a standard i7 mobile processor. Thus the results presented in this paper demonstrated that the MEC-ELM with SAT grid and CLCM makes an ideal candidate for fast object detection in complex and/or agricultural landscapes. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Computers in Industry | en |
dc.title | Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM) | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.compind.2018.03.014 | en |
dc.subject.keywords | Agricultural Spatial Analysis and Modelling | en |
dc.subject.keywords | Computer Vision | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
local.contributor.firstname | Edmund | en |
local.contributor.firstname | Gregory | en |
local.contributor.firstname | David | en |
local.contributor.firstname | David | en |
local.subject.for2008 | 070104 Agricultural Spatial Analysis and Modelling | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.seo2008 | 960904 Farmland, Arable Cropland and Permanent Cropland Land Management | en |
local.subject.seo2008 | 960804 Farmland, Arable Cropland and Permanent Cropland Flora, Fauna and Biodiversity | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | Research Services | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | esadgro2@une.edu.au | en |
local.profile.email | gfalzon2@une.edu.au | en |
local.profile.email | dmiron@une.edu.au | en |
local.profile.email | dlamb@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20180323-10445 | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 183 | en |
local.format.endpage | 191 | en |
local.identifier.scopusid | 85044151304 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 98 | en |
local.contributor.lastname | Sadgrove | en |
local.contributor.lastname | Falzon | en |
local.contributor.lastname | Miron | en |
local.contributor.lastname | Lamb | en |
dc.identifier.staff | une-id:esadgro2 | en |
dc.identifier.staff | une-id:gfalzon2 | en |
dc.identifier.staff | une-id:dmiron | en |
dc.identifier.staff | une-id:dlamb | en |
local.profile.orcid | 0000-0002-8710-9900 | en |
local.profile.orcid | 0000-0002-1989-9357 | en |
local.profile.orcid | 0000-0003-2157-5439 | en |
local.profile.orcid | 0000-0002-2917-2231 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:23161 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/22977 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM) | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Sadgrove, Edmund | en |
local.search.author | Falzon, Gregory | en |
local.search.author | Miron, David | en |
local.search.author | Lamb, David | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000434749900017 | en |
local.year.published | 2018 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/55b4ca76-5de5-43d9-a8d9-b3209954a71e | en |
local.subject.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.subject.for2020 | 460304 Computer vision | en |
local.subject.seo2020 | 180606 Terrestrial biodiversity | en |
local.subject.seo2020 | 180603 Evaluation, allocation, and impacts of land use | en |
dc.notification.token | f0cf1660-9e67-4f21-96d1-ab24bb7095a8 | en |
local.codeupdate.date | 2022-02-14T08:43:44.620 | en |
local.codeupdate.eperson | rtobler@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | undefined | en |
local.original.for2020 | 460304 Computer vision | en |
local.original.for2020 | 300206 Agricultural spatial analysis and modelling | en |
local.original.seo2020 | 180606 Terrestrial biodiversity | en |
local.original.seo2020 | 180607 Terrestrial erosion | en |
local.original.seo2020 | 180603 Evaluation, allocation, and impacts of land use | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
33
checked on Dec 21, 2024
Page view(s)
2,750
checked on Mar 3, 2024
Download(s)
4
checked on Mar 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.