Please use this identifier to cite or link to this item:
Title: Genetic correlations between wool traits and carcass traits in Merino sheep
Contributor(s): Mortimer, S I (author); Hatcher, S (author); Ponnampalam, E N (author); Pearce, K L (author); Pethick, D W (author); Fogarty, N M (author); Van Der Werf, Julius H  (author)orcid ; Brown, D J (author); Swan, A (author); Jacob, R H (author); Geesink, G H (author); Hopkins, D L (author); Edwards, J E Hocking (author)
Publication Date: 2017
Open Access: Yes
DOI: 10.2527/jas2017.1385
Handle Link:
Abstract: Genetic correlations between 29 wool production and quality traits and 14 whole carcass measures and carcass component traits were estimated from the Information Nucleus of 8 flocks managed across a range of Australian sheep production environments and genetically linked. Wool data were from over 5,000 Merino progeny born over 5 yr, whereas carcass data were from over 1,200 wether progeny of over 176 sires, slaughtered at about 21 kg carcass weight, on average. Wool traits included yearling and adult records for wool weight, fiber diameter, fiber diameter variation, staple strength, scoured color, and visual scores for breech and body wrinkle. Whole carcass measures included HCW, dressing percentage (DP), and various measures of fat depth and eye muscle dimensions. Carcass components were obtained by dissection, and lean meat yield (LMY) was predicted. Heritability estimates for whole carcass measures ranged from 0.12 ± 0.08 to 0.35 ± 0.10 and ranged from 0.17 ± 0.10 to 0.46 ± 0.10 for carcass dissection traits, with no evidence of important genotype × environment interactions. Genetic correlations indicated that selection for increased clean wool weight will result in reduced carcass fat (−0.17 to −0.34) and DP (−0.48 ± 0.15), with little effect on carcass muscle. Selection for lower fiber diameter will reduce HCW (−0.48 ± 0.15) as well as carcass fat (0.14 to 0.27) and muscle (0.21 to 0.50). There were high genetic correlations between live animal measures of fat and muscle depth and the carcass traits (generally greater than 0.5 in size). Selection to increase HCW (and DP) will result in sheep with fewer wrinkles on the body (−0.57 ± 0.10) and barer breeches (−0.74 ± 0.12, favorable), with minor deterioration in scoured wool color (reduced brightness and increased yellowness). Selection for reduced fat will also result in sheep with fewer body wrinkles (−0.42 to −0.79). Increasing LMY in Merinos through selection would result in a large reduction in carcass fat and DP (−0.66 to −0.84), with a smaller increase in carcass muscle and some increase in wool weight and wrinkles. Although no major antagonisms are apparent between the wool and carcass traits, developing selection indexes for dual-purpose wool and meat breeding objectives will require accurate estimates of genetic parameters to ensure that unfavorable relationships are suitably considered. The findings will aid development of dual-purpose wool and meat breeding objectives.
Publication Type: Journal Article
Source of Publication: Journal of Animal Science, 95(6), p. 2385-2398
Publisher: Oxford University Press
Place of Publication: United States
ISSN: 0021-8812
Field of Research (FOR): 070201 Animal Breeding
Socio-Economic Outcome Codes: 830311 Sheep - Wool
830310 Sheep - Meat
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 17
Views: 23
Downloads: 12
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
5 files
File Description SizeFormat 
open/SOURCE01.pdfPublisher version492.87 kBAdobe PDF
Download Adobe
Show full item record


checked on Nov 30, 2018

Page view(s)

checked on Mar 7, 2019


checked on Mar 7, 2019
Google Media

Google ScholarTM



Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.